[PDF] Convex Optimization - eBooks Review

Convex Optimization


Convex Optimization
DOWNLOAD

Download Convex Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Convex Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Convex Optimization


Convex Optimization
DOWNLOAD
Author : Stephen P. Boyd
language : en
Publisher: Cambridge University Press
Release Date : 2004-03-08

Convex Optimization written by Stephen P. Boyd and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-03-08 with Business & Economics categories.


Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.



Lectures On Convex Optimization


Lectures On Convex Optimization
DOWNLOAD
Author : Yurii Nesterov
language : en
Publisher: Springer
Release Date : 2018-11-19

Lectures On Convex Optimization written by Yurii Nesterov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-19 with Mathematics categories.


This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author’s lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.



Lectures On Modern Convex Optimization


Lectures On Modern Convex Optimization
DOWNLOAD
Author : Aharon Ben-Tal
language : fr
Publisher: SIAM
Release Date : 2001-01-01

Lectures On Modern Convex Optimization written by Aharon Ben-Tal and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-01-01 with Technology & Engineering categories.


Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.



Convex Optimization In Normed Spaces


Convex Optimization In Normed Spaces
DOWNLOAD
Author : Juan Peypouquet
language : en
Publisher: Springer
Release Date : 2015-03-30

Convex Optimization In Normed Spaces written by Juan Peypouquet and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-30 with Mathematics categories.


This work is intended to serve as a guide for graduate students and researchers who wish to get acquainted with the main theoretical and practical tools for the numerical minimization of convex functions on Hilbert spaces. Therefore, it contains the main tools that are necessary to conduct independent research on the topic. It is also a concise, easy-to-follow and self-contained textbook, which may be useful for any researcher working on related fields, as well as teachers giving graduate-level courses on the topic. It will contain a thorough revision of the extant literature including both classical and state-of-the-art references.



Introductory Lectures On Convex Optimization


Introductory Lectures On Convex Optimization
DOWNLOAD
Author : Yurii Nesterov
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-12-31

Introductory Lectures On Convex Optimization written by Yurii Nesterov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-12-31 with Mathematics categories.


It was in the middle of the 1980s, when the seminal paper by Kar markar opened a new epoch in nonlinear optimization. The importance of this paper, containing a new polynomial-time algorithm for linear op timization problems, was not only in its complexity bound. At that time, the most surprising feature of this algorithm was that the theoretical pre diction of its high efficiency was supported by excellent computational results. This unusual fact dramatically changed the style and direc tions of the research in nonlinear optimization. Thereafter it became more and more common that the new methods were provided with a complexity analysis, which was considered a better justification of their efficiency than computational experiments. In a new rapidly develop ing field, which got the name "polynomial-time interior-point methods", such a justification was obligatory. Afteralmost fifteen years of intensive research, the main results of this development started to appear in monographs [12, 14, 16, 17, 18, 19]. Approximately at that time the author was asked to prepare a new course on nonlinear optimization for graduate students. The idea was to create a course which would reflect the new developments in the field. Actually, this was a major challenge. At the time only the theory of interior-point methods for linear optimization was polished enough to be explained to students. The general theory of self-concordant functions had appeared in print only once in the form of research monograph [12].



Convex Analysis For Optimization


Convex Analysis For Optimization
DOWNLOAD
Author : Jan Brinkhuis
language : en
Publisher: Springer Nature
Release Date : 2020-05-05

Convex Analysis For Optimization written by Jan Brinkhuis and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-05 with Business & Economics categories.


This textbook offers graduate students a concise introduction to the classic notions of convex optimization. Written in a highly accessible style and including numerous examples and illustrations, it presents everything readers need to know about convexity and convex optimization. The book introduces a systematic three-step method for doing everything, which can be summarized as "conify, work, deconify". It starts with the concept of convex sets, their primal description, constructions, topological properties and dual description, and then moves on to convex functions and the fundamental principles of convex optimization and their use in the complete analysis of convex optimization problems by means of a systematic four-step method. Lastly, it includes chapters on alternative formulations of optimality conditions and on illustrations of their use. "The author deals with the delicate subjects in a precise yet light-minded spirit... For experts in the field, this book not only offers a unifying view, but also opens a door to new discoveries in convexity and optimization...perfectly suited for classroom teaching." Shuzhong Zhang, Professor of Industrial and Systems Engineering, University of Minnesota



Convex Analysis And Nonlinear Optimization


Convex Analysis And Nonlinear Optimization
DOWNLOAD
Author : Jonathan M. Borwein
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-11-30

Convex Analysis And Nonlinear Optimization written by Jonathan M. Borwein and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-30 with Mathematics categories.


Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.



Algorithms For Convex Optimization


Algorithms For Convex Optimization
DOWNLOAD
Author : Nisheeth K. Vishnoi
language : en
Publisher: Cambridge University Press
Release Date : 2021-10-07

Algorithms For Convex Optimization written by Nisheeth K. Vishnoi and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-07 with Computers categories.


In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.



Statistical Inference Via Convex Optimization


Statistical Inference Via Convex Optimization
DOWNLOAD
Author : Anatoli Juditsky
language : en
Publisher: Princeton University Press
Release Date : 2020-04-07

Statistical Inference Via Convex Optimization written by Anatoli Juditsky and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-07 with Mathematics categories.


This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences. Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems. Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.



Convex Optimization Algorithms


Convex Optimization Algorithms
DOWNLOAD
Author : Dimitri Bertsekas
language : en
Publisher: Athena Scientific
Release Date : 2015-02-01

Convex Optimization Algorithms written by Dimitri Bertsekas and has been published by Athena Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-02-01 with Mathematics categories.


This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.