[PDF] Lectures On Modern Convex Optimization - eBooks Review

Lectures On Modern Convex Optimization


Lectures On Modern Convex Optimization
DOWNLOAD

Download Lectures On Modern Convex Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On Modern Convex Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Lectures On Modern Convex Optimization


Lectures On Modern Convex Optimization
DOWNLOAD
Author : Aharon Ben-Tal
language : fr
Publisher: SIAM
Release Date : 2001-01-01

Lectures On Modern Convex Optimization written by Aharon Ben-Tal and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-01-01 with Technology & Engineering categories.


Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.



Lectures On Convex Optimization


Lectures On Convex Optimization
DOWNLOAD
Author : Yurii Nesterov
language : en
Publisher: Springer
Release Date : 2018-11-19

Lectures On Convex Optimization written by Yurii Nesterov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-19 with Mathematics categories.


This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author’s lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.



Convex Optimization


Convex Optimization
DOWNLOAD
Author : Stephen P. Boyd
language : en
Publisher: Cambridge University Press
Release Date : 2004-03-08

Convex Optimization written by Stephen P. Boyd and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-03-08 with Business & Economics categories.


Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.



Lectures On Modern Convex Optimization


Lectures On Modern Convex Optimization
DOWNLOAD
Author : Aharon Ben-Tal
language : en
Publisher:
Release Date : 2001

Lectures On Modern Convex Optimization written by Aharon Ben-Tal and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Convex programming categories.




A Mathematical View Of Interior Point Methods In Convex Optimization


A Mathematical View Of Interior Point Methods In Convex Optimization
DOWNLOAD
Author : James Renegar
language : en
Publisher: SIAM
Release Date : 2001-01-01

A Mathematical View Of Interior Point Methods In Convex Optimization written by James Renegar and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-01-01 with Mathematics categories.


Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.



Convex Analysis And Optimization


Convex Analysis And Optimization
DOWNLOAD
Author : Dimitri Bertsekas
language : en
Publisher: Athena Scientific
Release Date : 2003-03-01

Convex Analysis And Optimization written by Dimitri Bertsekas and has been published by Athena Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-03-01 with Mathematics categories.


A uniquely pedagogical, insightful, and rigorous treatment of the analytical/geometrical foundations of optimization. The book provides a comprehensive development of convexity theory, and its rich applications in optimization, including duality, minimax/saddle point theory, Lagrange multipliers, and Lagrangian relaxation/nondifferentiable optimization. It is an excellent supplement to several of our books: Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2016), Network Optimization (Athena Scientific, 1998), and Introduction to Linear Optimization (Athena Scientific, 1997). Aside from a thorough account of convex analysis and optimization, the book aims to restructure the theory of the subject, by introducing several novel unifying lines of analysis, including: 1) A unified development of minimax theory and constrained optimization duality as special cases of duality between two simple geometrical problems. 2) A unified development of conditions for existence of solutions of convex optimization problems, conditions for the minimax equality to hold, and conditions for the absence of a duality gap in constrained optimization. 3) A unification of the major constraint qualifications allowing the use of Lagrange multipliers for nonconvex constrained optimization, using the notion of constraint pseudonormality and an enhanced form of the Fritz John necessary optimality conditions. Among its features the book: a) Develops rigorously and comprehensively the theory of convex sets and functions, in the classical tradition of Fenchel and Rockafellar b) Provides a geometric, highly visual treatment of convex and nonconvex optimization problems, including existence of solutions, optimality conditions, Lagrange multipliers, and duality c) Includes an insightful and comprehensive presentation of minimax theory and zero sum games, and its connection with duality d) Describes dual optimization, the associated computational methods, including the novel incremental subgradient methods, and applications in linear, quadratic, and integer programming e) Contains many examples, illustrations, and exercises with complete solutions (about 200 pages) posted at the publisher's web site http://www.athenasc.com/convexity.html



Statistical Inference Via Convex Optimization


Statistical Inference Via Convex Optimization
DOWNLOAD
Author : Anatoli Juditsky
language : en
Publisher: Princeton University Press
Release Date : 2020-04-07

Statistical Inference Via Convex Optimization written by Anatoli Juditsky and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-07 with Mathematics categories.


This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences. Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems. Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.



Lectures On Stochastic Programming


Lectures On Stochastic Programming
DOWNLOAD
Author : Alexander Shapiro
language : en
Publisher: SIAM
Release Date : 2009-10-08

Lectures On Stochastic Programming written by Alexander Shapiro and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-10-08 with Mathematics categories.


A comprehensive treatment of optimization problems involving uncertain parameters for which stochastic models are available.



Convex Analysis And Global Optimization


Convex Analysis And Global Optimization
DOWNLOAD
Author : Hoang Tuy
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Convex Analysis And Global Optimization written by Hoang Tuy and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


Due to the general complementary convex structure underlying most nonconvex optimization problems encountered in applications, convex analysis plays an essential role in the development of global optimization methods. This book develops a coherent and rigorous theory of deterministic global optimization from this point of view. Part I constitutes an introduction to convex analysis, with an emphasis on concepts, properties and results particularly needed for global optimization, including those pertaining to the complementary convex structure. Part II presents the foundation and application of global search principles such as partitioning and cutting, outer and inner approximation, and decomposition to general global optimization problems and to problems with a low-rank nonconvex structure as well as quadratic problems. Much new material is offered, aside from a rigorous mathematical development. Audience: The book is written as a text for graduate students in engineering, mathematics, operations research, computer science and other disciplines dealing with optimization theory. It is also addressed to all scientists in various fields who are interested in mathematical optimization.