Convexity From The Geometric Point Of View

DOWNLOAD
Download Convexity From The Geometric Point Of View PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Convexity From The Geometric Point Of View book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Convexity From The Geometric Point Of View
DOWNLOAD
Author : Vitor Balestro
language : en
Publisher:
Release Date : 2024
Convexity From The Geometric Point Of View written by Vitor Balestro and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024 with categories.
Convexity From The Geometric Point Of View
DOWNLOAD
Author : Vitor Balestro
language : en
Publisher: Springer Nature
Release Date : 2024-07-14
Convexity From The Geometric Point Of View written by Vitor Balestro and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-14 with Mathematics categories.
This text gives a comprehensive introduction to the “common core” of convex geometry. Basic concepts and tools which are present in all branches of that field are presented with a highly didactic approach. Mainly directed to graduate and advanced undergraduates, the book is self-contained in such a way that it can be read by anyone who has standard undergraduate knowledge of analysis and of linear algebra. Additionally, it can be used as a single reference for a complete introduction to convex geometry, and the content coverage is sufficiently broad that the reader may gain a glimpse of the entire breadth of the field and various subfields. The book is suitable as a primary text for courses in convex geometry and also in discrete geometry (including polytopes). It is also appropriate for survey type courses in Banach space theory, convex analysis, differential geometry, and applications of measure theory. Solutions to all exercises are available to instructors who adopt the text for coursework. Most chapters use the same structure with the first part presenting theory and the next containing a healthy range of exercises. Some of the exercises may even be considered as short introductions to ideas which are not covered in the theory portion. Each chapter has a notes section offering a rich narrative to accompany the theory, illuminating the development of ideas, and providing overviews to the literature concerning the covered topics. In most cases, these notes bring the reader to the research front. The text includes many figures that illustrate concepts and some parts of the proofs, enabling the reader to have a better understanding of the geometric meaning of the ideas. An appendix containing basic (and geometric) measure theory collects useful information for convex geometers.
Convexity From The Geometric Point Of View Exercises And Solutions
DOWNLOAD
Author : Vitor Balestro
language : en
Publisher: Springer Nature
Release Date : 2025-08-04
Convexity From The Geometric Point Of View Exercises And Solutions written by Vitor Balestro and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-08-04 with Mathematics categories.
This book provides the solutions to all 347 exercises contained in the text Convexity from the Geometric Point of View, published in the same Cornerstones series. All these exercises are restated and numbered analogously to those in the original text. The corresponding solutions follow each exercise. Besides the discussion of all solutions, some additional facts about the main text are sprinkled throughout. Sections of further reading are posted to the ends of each chapter supplying the reader with background literature to selected notions and tools that play a role in the exercises and/or solutions to the chapter. The original text gives a comprehensive introduction to the “common core” of convex geometry and is suitable as a primary text for courses in convex geometry and in discrete geometry (including polytopes). Additionally, it can be used as a single reference for a complete introduction to convex geometry. The content coverage is sufficiently broad that the reader may gain a glimpse of the entire breadth of the field, various subfields, and interesting connections to neighboring disciplines. Mainly directed to graduate and advanced undergraduates, the original text is self-contained in such a way that it can be read by anyone who has standard undergraduate knowledge of analysis and of linear algebra. The same is true for this book of solutions.
Different Faces Of Geometry
DOWNLOAD
Author : Simon Donaldson
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-11
Different Faces Of Geometry written by Simon Donaldson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-11 with Mathematics categories.
Different Faces of Geometry - edited by the world renowned geometers S. Donaldson, Ya. Eliashberg, and M. Gromov - presents the current state, new results, original ideas and open questions from the following important topics in modern geometry: These apparently diverse topics have a common feature in that they are all areas of exciting current activity. The Editors have attracted an impressive array of leading specialists to author chapters for this volume: G. Mikhalkin (USA-Canada-Russia), V.D. Milman (Israel) and A.A. Giannopoulos (Greece), C. LeBrun (USA), Ko Honda (USA), P. Ozsvath (USA) and Z. Szabo (USA), C. Simpson (France), D. Joyce (UK) and P. Seidel (USA), and S. Bauer (Germany). One can distinguish various themes running through the different contributions. There is some emphasis on invariants defined by elliptic equations and their applications in low-dimensional topology, symplectic and contact geometry (Bauer, Seidel, Ozsvath and Szabo). These ideas enter, more tangentially, in the articles of Joyce, Honda and LeBrun.Here and elsewhere, as well as explaining the rapid advances that have been made, the articles convey a wonderful sense of the vast areas lying beyond our current understanding. Simpson's article emphasizes the need for interesting new constructions (in that case of Kahler and algebraic manifolds), a point which is also made by Bauer in the context of 4-manifolds and the 11/8 conjecture. LeBrun's article gives another perspective on 4-manifold theory, via Riemannian geometry, and the challenging open questions involving the geometry of even well-known 4-manifolds. There are also striking contrasts between the articles. The authors have taken different approaches: for example, the thoughtful essay of Simpson, the new research results of LeBrun and the thorough expositions with homework problems of Honda. One can also ponder the differences in the style of mathematics. In the articles of Honda, Giannopoulos and Milman, and Mikhalkin, the geometry is present in a very vivid and tangible way; combining respectively with topology, analysis and algebra.The papers of Bauer and Seidel, on the other hand, makes the point that algebraic and algebro-topological abstraction (triangulated categories, spectra) can play an important role in very unexpected ways in concrete geometric problems. - From the Preface by the Editors
Convexity From The Geometric Point Of View Exercises And Solutions
DOWNLOAD
Author : Vitor Balestro
language : en
Publisher: Birkhäuser
Release Date : 2025-05-24
Convexity From The Geometric Point Of View Exercises And Solutions written by Vitor Balestro and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-24 with Mathematics categories.
This book provides the solutions to all 347 exercises contained in the text Convexity from the Geometric Point of View, published in the same Cornerstones series. All these exercises are restated and numbered analogously to those in the original text. The corresponding solutions follow each exercise. Besides the discussion of all solutions, some additional facts about the main text are sprinkled throughout. Sections of further reading are posted to the ends of each chapter supplying the reader with background literature to selected notions and tools that play a role in the exercises and/or solutions to the chapter. The original text gives a comprehensive introduction to the “common core” of convex geometry and is suitable as a primary text for courses in convex geometry and in discrete geometry (including polytopes). Additionally, it can be used as a single reference for a complete introduction to convex geometry. The content coverage is sufficiently broad that the reader may gain a glimpse of the entire breadth of the field, various subfields, and interesting connections to neighboring disciplines. Mainly directed to graduate and advanced undergraduates, the original text is self-contained in such a way that it can be read by anyone who has standard undergraduate knowledge of analysis and of linear algebra. The same is true for this book of solutions.
Convexity And Well Posed Problems
DOWNLOAD
Author : Roberto Lucchetti
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-02-02
Convexity And Well Posed Problems written by Roberto Lucchetti and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-02-02 with Mathematics categories.
This book deals mainly with the study of convex functions and their behavior from the point of view of stability with respect to perturbations. We shall consider convex functions from the most modern point of view: a function is de?ned to be convex whenever its epigraph, the set of the points lying above the graph, is a convex set. Thus many of its properties can be seen also as properties of a certain convex set related to it. Moreover, we shall consider extended real valued functions, i. e. , functions taking possibly the values?? and +?. The reason for considering the value +? is the powerful device of including the constraint set of a constrained minimum problem into the objective function itself (by rede?ning it as +? outside the constraint set). Except for trivial cases, the minimum value must be taken at a point where the function is not +?, hence at a point in the constraint set. And the value ?? is allowed because useful operations, such as the inf-convolution, can give rise to functions valued?? even when the primitive objects are real valued. Observe that de?ning the objective function to be +? outside the closed constraint set preserves lower semicontinuity, which is the pivotal and mi- mal continuity assumption one needs when dealing with minimum problems. Variational calculus is usually based on derivatives.
Convexity And Its Applications
DOWNLOAD
Author : GRUBER
language : en
Publisher: Birkhäuser
Release Date : 2013-11-11
Convexity And Its Applications written by GRUBER and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Social Science categories.
This collection of surveys consists in part of extensions of papers presented at the conferences on convexity at the Technische Universitat Wien (July 1981) and at the Universitat Siegen (July 1982) and in part of articles written at the invitation of the editors. This volume together with the earlier volume «Contributions to Geometry» edited by Tolke and Wills and published by Birkhauser in 1979 should give a fairly good account of many of the more important facets of convexity and its applications. Besides being an up to date reference work this volume can be used as an advanced treatise on convexity and related fields. We sincerely hope that it will inspire future research. Fenchel, in his paper, gives an historical account of convexity showing many important but not so well known facets. The articles of Papini and Phelps relate convexity to problems of functional analysis on nearest points, nonexpansive maps and the extremal structure of convex sets. A bridge to mathematical physics in the sense of Polya and Szego is provided by the survey of Bandle on isoperimetric inequalities, and Bachem's paper illustrates the importance of convexity for optimization. The contribution of Coxeter deals with a classical topic in geometry, the lines on the cubic surface whereas Leichtweiss shows the close connections between convexity and differential geometry. The exhaustive survey of Chalk on point lattices is related to algebraic number theory. A topic important for applications in biology, geology etc.
Convex Analysis
DOWNLOAD
Author : Ralph Tyrell Rockafellar
language : en
Publisher: Princeton University Press
Release Date : 2015-04-29
Convex Analysis written by Ralph Tyrell Rockafellar and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-29 with Mathematics categories.
Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and the continuity and differentiability of convex functions and saddle- functions. This book has firmly established a new and vital area not only for pure mathematics but also for applications to economics and engineering. A sound knowledge of linear algebra and introductory real analysis should provide readers with sufficient background for this book. There is also a guide for the reader who may be using the book as an introduction, indicating which parts are essential and which may be skipped on a first reading.
Convex Functions
DOWNLOAD
Author :
language : en
Publisher: Academic Press
Release Date : 1974-02-08
Convex Functions written by and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1974-02-08 with Mathematics categories.
Convex Functions
Convex Analysis
DOWNLOAD
Author : Steven G. Krantz
language : en
Publisher: CRC Press
Release Date : 2014-10-20
Convex Analysis written by Steven G. Krantz and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-10-20 with Mathematics categories.
Convexity is an ancient idea going back to Archimedes. Used sporadically in the mathematical literature over the centuries, today it is a flourishing area of research and a mathematical subject in its own right. Convexity is used in optimization theory, functional analysis, complex analysis, and other parts of mathematics. Convex Analysis introduces analytic tools for studying convexity and provides analytical applications of the concept. The book includes a general background on classical geometric theory which allows readers to obtain a glimpse of how modern mathematics is developed and how geometric ideas may be studied analytically. Featuring a user-friendly approach, the book contains copious examples and plenty of figures to illustrate the ideas presented. It also includes an appendix with the technical tools needed to understand certain arguments in the book, a tale of notation, and a thorough glossary to help readers with unfamiliar terms. This book is a definitive introductory text to the concept of convexity in the context of mathematical analysis and a suitable resource for students and faculty alike.