Counterfactuals And Causal Inference

DOWNLOAD
Download Counterfactuals And Causal Inference PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Counterfactuals And Causal Inference book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Counterfactuals And Causal Inference
DOWNLOAD
Author : Stephen L. Morgan
language : en
Publisher: Cambridge University Press
Release Date : 2007-07-30
Counterfactuals And Causal Inference written by Stephen L. Morgan and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-30 with Social Science categories.
Did mandatory busing programs in the 1970s increase the school achievement of disadvantaged minority youth? Does obtaining a college degree increase an individual's labor market earnings? Did the use of the butterfly ballot in some Florida counties in the 2000 presidential election cost Al Gore votes? If so, was the number of miscast votes sufficiently large to have altered the election outcome? At their core, these types of questions are simple cause-and-effect questions. Simple cause-and-effect questions are the motivation for much empirical work in the social sciences. This book presents a model and set of methods for causal effect estimation that social scientists can use to address causal questions such as these. The essential features of the counterfactual model of causality for observational data analysis are presented with examples from sociology, political science, and economics.
Elements Of Causal Inference
DOWNLOAD
Author : Jonas Peters
language : en
Publisher: MIT Press
Release Date : 2017-11-29
Elements Of Causal Inference written by Jonas Peters and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-29 with Computers categories.
A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.
Causal Inference In Statistics
DOWNLOAD
Author : Judea Pearl
language : en
Publisher: John Wiley & Sons
Release Date : 2016-01-25
Causal Inference In Statistics written by Judea Pearl and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-25 with Mathematics categories.
CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.
Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020
Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
On The Edge Of Commitment
DOWNLOAD
Author : Stephen Lawrence Morgan
language : en
Publisher: Stanford University Press
Release Date : 2005
On The Edge Of Commitment written by Stephen Lawrence Morgan and has been published by Stanford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Education categories.
This book offers a new model of educational achievement to explain why some students are committed to preparation for college.
An Introduction To Causal Inference
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2009
An Introduction To Causal Inference written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with categories.
This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
Handbook Of Causal Analysis For Social Research
DOWNLOAD
Author : Stephen L. Morgan
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-22
Handbook Of Causal Analysis For Social Research written by Stephen L. Morgan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-22 with Social Science categories.
What constitutes a causal explanation, and must an explanation be causal? What warrants a causal inference, as opposed to a descriptive regularity? What techniques are available to detect when causal effects are present, and when can these techniques be used to identify the relative importance of these effects? What complications do the interactions of individuals create for these techniques? When can mixed methods of analysis be used to deepen causal accounts? Must causal claims include generative mechanisms, and how effective are empirical methods designed to discover them? The Handbook of Causal Analysis for Social Research tackles these questions with nineteen chapters from leading scholars in sociology, statistics, public health, computer science, and human development.
Causality
DOWNLOAD
Author : Judea Pearl
language : en
Publisher: Cambridge University Press
Release Date : 2009-09-14
Causality written by Judea Pearl and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-14 with Computers categories.
Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence ...
Explanation In Causal Inference
DOWNLOAD
Author : Tyler VanderWeele
language : en
Publisher: Oxford University Press
Release Date : 2015-02-13
Explanation In Causal Inference written by Tyler VanderWeele and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-02-13 with Psychology categories.
The book provides an accessible but comprehensive overview of methods for mediation and interaction. There has been considerable and rapid methodological development on mediation and moderation/interaction analysis within the causal-inference literature over the last ten years. Much of this material appears in a variety of specialized journals, and some of the papers are quite technical. There has also been considerable interest in these developments from empirical researchers in the social and biomedical sciences. However, much of the material is not currently in a format that is accessible to them. The book closes these gaps by providing an accessible, comprehensive, book-length coverage of mediation. The book begins with a comprehensive introduction to mediation analysis, including chapters on concepts for mediation, regression-based methods, sensitivity analysis, time-to-event outcomes, methods for multiple mediators, methods for time-varying mediation and longitudinal data, and relations between mediation and other concepts involving intermediates such as surrogates, principal stratification, instrumental variables, and Mendelian randomization. The second part of the book concerns interaction or "moderation," including concepts for interaction, statistical interaction, confounding and interaction, mechanistic interaction, bias analysis for interaction, interaction in genetic studies, and power and sample-size calculation for interaction. The final part of the book provides comprehensive discussion about the relationships between mediation and interaction and unites these concepts within a single framework. This final part also provides an introduction to spillover effects or social interaction, concluding with a discussion of social-network analyses. The book is written to be accessible to anyone with a basic knowledge of statistics. Comprehensive appendices provide more technical details for the interested reader. Applied empirical examples from a variety of fields are given throughout. Software implementation in SAS, Stata, SPSS, and R is provided. The book should be accessible to students and researchers who have completed a first-year graduate sequence in quantitative methods in one of the social- or biomedical-sciences disciplines. The book will only presuppose familiarity with linear and logistic regression, and could potentially be used as an advanced undergraduate book as well.
The Book Of Why
DOWNLOAD
Author : Judea Pearl
language : en
Publisher: Penguin UK
Release Date : 2018-05-15
The Book Of Why written by Judea Pearl and has been published by Penguin UK this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-15 with Philosophy categories.
The hugely influential book on how the understanding of causality revolutionized science and the world, by the pioneer of artificial intelligence 'Wonderful ... illuminating and fun to read' Daniel Kahneman, Nobel Prize-winner and author of Thinking, Fast and Slow 'Correlation does not imply causation.' For decades, this mantra was invoked by scientists in order to avoid taking positions as to whether one thing caused another, such as smoking and cancer, or carbon dioxide and global warming. But today, that taboo is dead. The causal revolution, sparked by world-renowned computer scientist Judea Pearl and his colleagues, has cut through a century of confusion and placed cause and effect on a firm scientific basis. Now, Pearl and science journalist Dana Mackenzie explain causal thinking to general readers for the first time, showing how it allows us to explore the world that is and the worlds that could have been. It is the essence of human and artificial intelligence. And just as Pearl's discoveries have enabled machines to think better, The Book of Why explains how we too can think better. 'Pearl's accomplishments over the last 30 years have provided the theoretical basis for progress in artificial intelligence and have redefined the term "thinking machine"' Vint Cerf