[PDF] Cyber Security Meets Machine Learning - eBooks Review

Cyber Security Meets Machine Learning


Cyber Security Meets Machine Learning
DOWNLOAD

Download Cyber Security Meets Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Cyber Security Meets Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Cyber Security Meets Machine Learning


Cyber Security Meets Machine Learning
DOWNLOAD
Author : Xiaofeng Chen
language : en
Publisher: Springer Nature
Release Date : 2021-07-02

Cyber Security Meets Machine Learning written by Xiaofeng Chen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-02 with Computers categories.


Machine learning boosts the capabilities of security solutions in the modern cyber environment. However, there are also security concerns associated with machine learning models and approaches: the vulnerability of machine learning models to adversarial attacks is a fatal flaw in the artificial intelligence technologies, and the privacy of the data used in the training and testing periods is also causing increasing concern among users. This book reviews the latest research in the area, including effective applications of machine learning methods in cybersecurity solutions and the urgent security risks related to the machine learning models. The book is divided into three parts: Cyber Security Based on Machine Learning; Security in Machine Learning Methods and Systems; and Security and Privacy in Outsourced Machine Learning. Addressing hot topics in cybersecurity and written by leading researchers in the field, the book features self-contained chapters to allow readers to select topics that are relevant to their needs. It is a valuable resource for all those interested in cybersecurity and robust machine learning, including graduate students and academic and industrial researchers, wanting to gain insights into cutting-edge research topics, as well as related tools and inspiring innovations.



Machine Learning For Cybersecurity Threat Detection And Mitigation


Machine Learning For Cybersecurity Threat Detection And Mitigation
DOWNLOAD
Author : Dr. Araddhana Arvind Deshmukh
language : en
Publisher: Xoffencer international book publication house
Release Date : 2024-07-05

Machine Learning For Cybersecurity Threat Detection And Mitigation written by Dr. Araddhana Arvind Deshmukh and has been published by Xoffencer international book publication house this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-05 with Computers categories.


As a result of the increasingly complex structure of today's information systems, there is a growing agreement that Artificial Intelligence (AI) is required in order to keep up with the exponential expansion of big data. Techniques from the field of machine learning (ML), in particular deep learning, are already being used to address a broad range of issues that are encountered in the real world. There are a number of intriguing examples of machine learning's practical triumphs, including machine translation, recommendations for vacations and travel, item identification and monitoring, and even various applications in the healthcare industry. Furthermore, machine learning has shown a great deal of promise in the area of autonomous driving and communication systems, which is why it is rightly considered to be a technical enabler. On the other hand, the civilization of today is more reliant than ever before on information technology systems, even autonomous ones, which are itself abused by malicious actors. In actuality, cybercriminals are always inventing new threats, and, they will have the ability to do significant harm or even kill people due to their capabilities. In order for defensive mechanisms to be able to prevent such events and limit the multiplicity of hazards that might potentially harm both current and future information technology systems, they need to be able to quickly adapt to (i) settings that are continually changing and (ii) threat landscapes that are always developing. It is hard to ignore the use of machine learning in the field of cybersecurity since it is manifestly impossible to address such a dual demand using methodologies that are static and human-defined. It is not surprising that a number of surveys and technical studies have been conducted on the subject of machine learning integration in the field of cybersecurity. Even though there have been a lot of accomplishments in research settings, there has been only a little amount of progress made in creating and integrating machine learning in industrial systems. The vast majority of these solutions are still using 'unsupervised' techniques, mostly for 'anomaly detection,' according to a recent report. This is despite the fact that more than ninety percent of enterprises are presently incorporating AI and ML into their defensive systems.



Game Theory And Machine Learning For Cyber Security


Game Theory And Machine Learning For Cyber Security
DOWNLOAD
Author : Charles A. Kamhoua
language : en
Publisher: John Wiley & Sons
Release Date : 2021-09-08

Game Theory And Machine Learning For Cyber Security written by Charles A. Kamhoua and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-08 with Technology & Engineering categories.


GAME THEORY AND MACHINE LEARNING FOR CYBER SECURITY Move beyond the foundations of machine learning and game theory in cyber security to the latest research in this cutting-edge field In Game Theory and Machine Learning for Cyber Security, a team of expert security researchers delivers a collection of central research contributions from both machine learning and game theory applicable to cybersecurity. The distinguished editors have included resources that address open research questions in game theory and machine learning applied to cyber security systems and examine the strengths and limitations of current game theoretic models for cyber security. Readers will explore the vulnerabilities of traditional machine learning algorithms and how they can be mitigated in an adversarial machine learning approach. The book offers a comprehensive suite of solutions to a broad range of technical issues in applying game theory and machine learning to solve cyber security challenges. Beginning with an introduction to foundational concepts in game theory, machine learning, cyber security, and cyber deception, the editors provide readers with resources that discuss the latest in hypergames, behavioral game theory, adversarial machine learning, generative adversarial networks, and multi-agent reinforcement learning. Readers will also enjoy: A thorough introduction to game theory for cyber deception, including scalable algorithms for identifying stealthy attackers in a game theoretic framework, honeypot allocation over attack graphs, and behavioral games for cyber deception An exploration of game theory for cyber security, including actionable game-theoretic adversarial intervention detection against advanced persistent threats Practical discussions of adversarial machine learning for cyber security, including adversarial machine learning in 5G security and machine learning-driven fault injection in cyber-physical systems In-depth examinations of generative models for cyber security Perfect for researchers, students, and experts in the fields of computer science and engineering, Game Theory and Machine Learning for Cyber Security is also an indispensable resource for industry professionals, military personnel, researchers, faculty, and students with an interest in cyber security.



Machine Learning For Cybersecurity Cookbook


Machine Learning For Cybersecurity Cookbook
DOWNLOAD
Author : Emmanuel Tsukerman
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-11-25

Machine Learning For Cybersecurity Cookbook written by Emmanuel Tsukerman and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-25 with Computers categories.


Learn how to apply modern AI to create powerful cybersecurity solutions for malware, pentesting, social engineering, data privacy, and intrusion detection Key FeaturesManage data of varying complexity to protect your system using the Python ecosystemApply ML to pentesting, malware, data privacy, intrusion detection system(IDS) and social engineeringAutomate your daily workflow by addressing various security challenges using the recipes covered in the bookBook Description Organizations today face a major threat in terms of cybersecurity, from malicious URLs to credential reuse, and having robust security systems can make all the difference. With this book, you'll learn how to use Python libraries such as TensorFlow and scikit-learn to implement the latest artificial intelligence (AI) techniques and handle challenges faced by cybersecurity researchers. You'll begin by exploring various machine learning (ML) techniques and tips for setting up a secure lab environment. Next, you'll implement key ML algorithms such as clustering, gradient boosting, random forest, and XGBoost. The book will guide you through constructing classifiers and features for malware, which you'll train and test on real samples. As you progress, you'll build self-learning, reliant systems to handle cybersecurity tasks such as identifying malicious URLs, spam email detection, intrusion detection, network protection, and tracking user and process behavior. Later, you'll apply generative adversarial networks (GANs) and autoencoders to advanced security tasks. Finally, you'll delve into secure and private AI to protect the privacy rights of consumers using your ML models. By the end of this book, you'll have the skills you need to tackle real-world problems faced in the cybersecurity domain using a recipe-based approach. What you will learnLearn how to build malware classifiers to detect suspicious activitiesApply ML to generate custom malware to pentest your securityUse ML algorithms with complex datasets to implement cybersecurity conceptsCreate neural networks to identify fake videos and imagesSecure your organization from one of the most popular threats – insider threatsDefend against zero-day threats by constructing an anomaly detection systemDetect web vulnerabilities effectively by combining Metasploit and MLUnderstand how to train a model without exposing the training dataWho this book is for This book is for cybersecurity professionals and security researchers who are looking to implement the latest machine learning techniques to boost computer security, and gain insights into securing an organization using red and blue team ML. This recipe-based book will also be useful for data scientists and machine learning developers who want to experiment with smart techniques in the cybersecurity domain. Working knowledge of Python programming and familiarity with cybersecurity fundamentals will help you get the most out of this book.



Hands On Machine Learning For Cybersecurity


Hands On Machine Learning For Cybersecurity
DOWNLOAD
Author : Soma Halder
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-12-31

Hands On Machine Learning For Cybersecurity written by Soma Halder and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-31 with Computers categories.


Get into the world of smart data security using machine learning algorithms and Python libraries Key FeaturesLearn machine learning algorithms and cybersecurity fundamentalsAutomate your daily workflow by applying use cases to many facets of securityImplement smart machine learning solutions to detect various cybersecurity problemsBook Description Cyber threats today are one of the costliest losses that an organization can face. In this book, we use the most efficient tool to solve the big problems that exist in the cybersecurity domain. The book begins by giving you the basics of ML in cybersecurity using Python and its libraries. You will explore various ML domains (such as time series analysis and ensemble modeling) to get your foundations right. You will implement various examples such as building system to identify malicious URLs, and building a program to detect fraudulent emails and spam. Later, you will learn how to make effective use of K-means algorithm to develop a solution to detect and alert you to any malicious activity in the network. Also learn how to implement biometrics and fingerprint to validate whether the user is a legitimate user or not. Finally, you will see how we change the game with TensorFlow and learn how deep learning is effective for creating models and training systems What you will learnUse machine learning algorithms with complex datasets to implement cybersecurity conceptsImplement machine learning algorithms such as clustering, k-means, and Naive Bayes to solve real-world problemsLearn to speed up a system using Python libraries with NumPy, Scikit-learn, and CUDAUnderstand how to combat malware, detect spam, and fight financial fraud to mitigate cyber crimesUse TensorFlow in the cybersecurity domain and implement real-world examplesLearn how machine learning and Python can be used in complex cyber issuesWho this book is for This book is for the data scientists, machine learning developers, security researchers, and anyone keen to apply machine learning to up-skill computer security. Having some working knowledge of Python and being familiar with the basics of machine learning and cybersecurity fundamentals will help to get the most out of the book



Implications Of Artificial Intelligence For Cybersecurity


Implications Of Artificial Intelligence For Cybersecurity
DOWNLOAD
Author : National Academies of Sciences, Engineering, and Medicine
language : en
Publisher: National Academies Press
Release Date : 2020-01-27

Implications Of Artificial Intelligence For Cybersecurity written by National Academies of Sciences, Engineering, and Medicine and has been published by National Academies Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-27 with Computers categories.


In recent years, interest and progress in the area of artificial intelligence (AI) and machine learning (ML) have boomed, with new applications vigorously pursued across many sectors. At the same time, the computing and communications technologies on which we have come to rely present serious security concerns: cyberattacks have escalated in number, frequency, and impact, drawing increased attention to the vulnerabilities of cyber systems and the need to increase their security. In the face of this changing landscape, there is significant concern and interest among policymakers, security practitioners, technologists, researchers, and the public about the potential implications of AI and ML for cybersecurity. The National Academies of Sciences, Engineering, and Medicine convened a workshop on March 12-13, 2019 to discuss and explore these concerns. This publication summarizes the presentations and discussions from the workshop.



Machine Learning And Security


Machine Learning And Security
DOWNLOAD
Author : Clarence Chio
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-01-26

Machine Learning And Security written by Clarence Chio and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-26 with Computers categories.


Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis. Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike. Learn how machine learning has contributed to the success of modern spam filters Quickly detect anomalies, including breaches, fraud, and impending system failure Conduct malware analysis by extracting useful information from computer binaries Uncover attackers within the network by finding patterns inside datasets Examine how attackers exploit consumer-facing websites and app functionality Translate your machine learning algorithms from the lab to production Understand the threat attackers pose to machine learning solutions



Hands On Artificial Intelligence For Cybersecurity


Hands On Artificial Intelligence For Cybersecurity
DOWNLOAD
Author : Alessandro Parisi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-08-02

Hands On Artificial Intelligence For Cybersecurity written by Alessandro Parisi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-02 with Computers categories.


Build smart cybersecurity systems with the power of machine learning and deep learning to protect your corporate assets Key FeaturesIdentify and predict security threats using artificial intelligenceDevelop intelligent systems that can detect unusual and suspicious patterns and attacksLearn how to test the effectiveness of your AI cybersecurity algorithms and toolsBook Description Today's organizations spend billions of dollars globally on cybersecurity. Artificial intelligence has emerged as a great solution for building smarter and safer security systems that allow you to predict and detect suspicious network activity, such as phishing or unauthorized intrusions. This cybersecurity book presents and demonstrates popular and successful AI approaches and models that you can adapt to detect potential attacks and protect your corporate systems. You'll learn about the role of machine learning and neural networks, as well as deep learning in cybersecurity, and you'll also learn how you can infuse AI capabilities into building smart defensive mechanisms. As you advance, you'll be able to apply these strategies across a variety of applications, including spam filters, network intrusion detection, botnet detection, and secure authentication. By the end of this book, you'll be ready to develop intelligent systems that can detect unusual and suspicious patterns and attacks, thereby developing strong network security defenses using AI. What you will learnDetect email threats such as spamming and phishing using AICategorize APT, zero-days, and polymorphic malware samplesOvercome antivirus limits in threat detectionPredict network intrusions and detect anomalies with machine learningVerify the strength of biometric authentication procedures with deep learningEvaluate cybersecurity strategies and learn how you can improve themWho this book is for If you’re a cybersecurity professional or ethical hacker who wants to build intelligent systems using the power of machine learning and AI, you’ll find this book useful. Familiarity with cybersecurity concepts and knowledge of Python programming is essential to get the most out of this book.



Ai Machine Learning And Deep Learning


Ai Machine Learning And Deep Learning
DOWNLOAD
Author : Fei Hu
language : en
Publisher: CRC Press
Release Date : 2023-06-05

Ai Machine Learning And Deep Learning written by Fei Hu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-05 with Computers categories.


Today, Artificial Intelligence (AI) and Machine Learning/ Deep Learning (ML/DL) have become the hottest areas in information technology. In our society, many intelligent devices rely on AI/ML/DL algorithms/tools for smart operations. Although AI/ML/DL algorithms and tools have been used in many internet applications and electronic devices, they are also vulnerable to various attacks and threats. AI parameters may be distorted by the internal attacker; the DL input samples may be polluted by adversaries; the ML model may be misled by changing the classification boundary, among many other attacks and threats. Such attacks can make AI products dangerous to use. While this discussion focuses on security issues in AI/ML/DL-based systems (i.e., securing the intelligent systems themselves), AI/ML/DL models and algorithms can actually also be used for cyber security (i.e., the use of AI to achieve security). Since AI/ML/DL security is a newly emergent field, many researchers and industry professionals cannot yet obtain a detailed, comprehensive understanding of this area. This book aims to provide a complete picture of the challenges and solutions to related security issues in various applications. It explains how different attacks can occur in advanced AI tools and the challenges of overcoming those attacks. Then, the book describes many sets of promising solutions to achieve AI security and privacy. The features of this book have seven aspects: This is the first book to explain various practical attacks and countermeasures to AI systems Both quantitative math models and practical security implementations are provided It covers both "securing the AI system itself" and "using AI to achieve security" It covers all the advanced AI attacks and threats with detailed attack models It provides multiple solution spaces to the security and privacy issues in AI tools The differences among ML and DL security and privacy issues are explained Many practical security applications are covered



Artificial Intelligence And Cybersecurity


Artificial Intelligence And Cybersecurity
DOWNLOAD
Author : Tuomo Sipola
language : en
Publisher: Springer Nature
Release Date : 2022-12-07

Artificial Intelligence And Cybersecurity written by Tuomo Sipola and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-07 with Computers categories.


This book discusses artificial intelligence (AI) and cybersecurity from multiple points of view. The diverse chapters reveal modern trends and challenges related to the use of artificial intelligence when considering privacy, cyber-attacks and defense as well as applications from malware detection to radio signal intelligence. The chapters are contributed by an international team of renown researchers and professionals in the field of AI and cybersecurity. During the last few decades the rise of modern AI solutions that surpass humans in specific tasks has occurred. Moreover, these new technologies provide new methods of automating cybersecurity tasks. In addition to the privacy, ethics and cybersecurity concerns, the readers learn several new cutting edge applications of AI technologies. Researchers working in AI and cybersecurity as well as advanced level students studying computer science and electrical engineering with a focus on AI and Cybersecurity will find this book useful as a reference. Professionals working within these related fields will also want to purchase this book as a reference.