Data Analysis With Rstudio

DOWNLOAD
Download Data Analysis With Rstudio PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Analysis With Rstudio book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Data Analysis With Rstudio
DOWNLOAD
Author : Franz Kronthaler
language : en
Publisher: Springer Nature
Release Date : 2020-12-21
Data Analysis With Rstudio written by Franz Kronthaler and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-21 with Computers categories.
The objective of this text is to introduce RStudio to practitioners and students and enable them to use R in their everyday work. It is not a statistical textbook, the purpose is to transmit the joy of analyzing data with RStudio. Practitioners and students learn how RStudio can be installed and used, they learn to import data, write scripts and save working results. Furthermore, they learn to employ descriptive statistics and create graphics with RStudio. Additionally, it is shown how RStudio can be used to test hypotheses, run an analysis of variance and regressions. To deepen the learned content, tasks are included with the solutions provided at the end of the textbook. This textbook has been recommended and developed for university courses in Germany, Austria and Switzerland.
R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12
R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Introduction To Data Science
DOWNLOAD
Author : Rafael A. Irizarry
language : en
Publisher: CRC Press
Release Date : 2019-11-12
Introduction To Data Science written by Rafael A. Irizarry and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-12 with Mathematics categories.
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert. A complete solutions manual is available to registered instructors who require the text for a course.
Mastering Shiny
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-04-29
Mastering Shiny written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-29 with Computers categories.
Master the Shiny web framework—and take your R skills to a whole new level. By letting you move beyond static reports, Shiny helps you create fully interactive web apps for data analyses. Users will be able to jump between datasets, explore different subsets or facets of the data, run models with parameter values of their choosing, customize visualizations, and much more. Hadley Wickham from RStudio shows data scientists, data analysts, statisticians, and scientific researchers with no knowledge of HTML, CSS, or JavaScript how to create rich web apps from R. This in-depth guide provides a learning path that you can follow with confidence, as you go from a Shiny beginner to an expert developer who can write large, complex apps that are maintainable and performant. Get started: Discover how the major pieces of a Shiny app fit together Put Shiny in action: Explore Shiny functionality with a focus on code samples, example apps, and useful techniques Master reactivity: Go deep into the theory and practice of reactive programming and examine reactive graph components Apply best practices: Examine useful techniques for making your Shiny apps work well in production
Text Mining With R
DOWNLOAD
Author : Julia Silge
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-06-12
Text Mining With R written by Julia Silge and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-12 with Computers categories.
Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you’ll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr. You’ll learn how tidytext and other tidy tools in R can make text analysis easier and more effective. The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You’ll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media. Learn how to apply the tidy text format to NLP Use sentiment analysis to mine the emotional content of text Identify a document’s most important terms with frequency measurements Explore relationships and connections between words with the ggraph and widyr packages Convert back and forth between R’s tidy and non-tidy text formats Use topic modeling to classify document collections into natural groups Examine case studies that compare Twitter archives, dig into NASA metadata, and analyze thousands of Usenet messages
Learning Statistics With R
DOWNLOAD
Author : Danielle Navarro
language : en
Publisher:
Release Date : 2018
Learning Statistics With R written by Danielle Navarro and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.
Statistical Analysis Of Network Data With R
DOWNLOAD
Author : Eric D. Kolaczyk
language : en
Publisher: Springer
Release Date : 2014-05-22
Statistical Analysis Of Network Data With R written by Eric D. Kolaczyk and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-22 with Computers categories.
Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).
Statistics And Data Visualization Using R
DOWNLOAD
Author : David S. Brown
language : en
Publisher: SAGE Publications
Release Date : 2021-08-24
Statistics And Data Visualization Using R written by David S. Brown and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-24 with Social Science categories.
Designed to introduce students to quantitative methods in a way that can be applied to all kinds of data in all kinds of situations, Statistics and Data Visualization Using R: The Art and Practice of Data Analysis by David S. Brown teaches students statistics through charts, graphs, and displays of data that help students develop intuition around statistics as well as data visualization skills. By focusing on the visual nature of statistics instead of mathematical proofs and derivations, students can see the relationships between variables that are the foundation of quantitative analysis. Using the latest tools in R and R RStudio® for calculations and data visualization, students learn valuable skills they can take with them into a variety of future careers in the public sector, the private sector, or academia. Starting at the most basic introduction to data and going through most crucial statistical methods, this introductory textbook quickly gets students new to statistics up to speed running analyses and interpreting data from social science research.
Rstudio For R Statistical Computing Cookbook
DOWNLOAD
Author : Andrea Cirillo
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-04-29
Rstudio For R Statistical Computing Cookbook written by Andrea Cirillo and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-29 with Computers categories.
Over 50 practical and useful recipes to help you perform data analysis with R by unleashing every native RStudio feature About This Book 54 useful and practical tasks to improve working systems Includes optimizing performance and reliability or uptime, reporting, system management tools, interfacing to standard data ports, and so on Offers 10-15 real-life, practical improvements for each user type Who This Book Is For This book is targeted at R statisticians, data scientists, and R programmers. Readers with R experience who are looking to take the plunge into statistical computing will find this Cookbook particularly indispensable. What You Will Learn Familiarize yourself with the latest advanced R console features Create advanced and interactive graphics Manage your R project and project files effectively Perform reproducible statistical analyses in your R projects Use RStudio to design predictive models for a specific domain-based application Use RStudio to effectively communicate your analyses results and even publish them to a blog Put yourself on the frontiers of data science and data monetization in R with all the tools that are needed to effectively communicate your results and even transform your work into a data product In Detail The requirement of handling complex datasets, performing unprecedented statistical analysis, and providing real-time visualizations to businesses has concerned statisticians and analysts across the globe. RStudio is a useful and powerful tool for statistical analysis that harnesses the power of R for computational statistics, visualization, and data science, in an integrated development environment. This book is a collection of recipes that will help you learn and understand RStudio features so that you can effectively perform statistical analysis and reporting, code editing, and R development. The first few chapters will teach you how to set up your own data analysis project in RStudio, acquire data from different data sources, and manipulate and clean data for analysis and visualization purposes. You'll get hands-on with various data visualization methods using ggplot2, and you will create interactive and multidimensional visualizations with D3.js. Additional recipes will help you optimize your code; implement various statistical models to manage large datasets; perform text analysis and predictive analysis; and master time series analysis, machine learning, forecasting; and so on. In the final few chapters, you'll learn how to create reports from your analytical application with the full range of static and dynamic reporting tools that are available in RStudio so that you can effectively communicate results and even transform them into interactive web applications. Style and approach RStudio is an open source Integrated Development Environment (IDE) for the R platform. The R programming language is used for statistical computing and graphics, which RStudio facilitates and enhances through its integrated environment. This Cookbook will help you learn to write better R code using the advanced features of the R programming language using RStudio. Readers will learn advanced R techniques to compute the language and control object evaluation within R functions. Some of the contents are: Accessing an API with R Substituting missing values by interpolation Performing data filtering activities R Statistical implementation for Geospatial data Developing shiny add-ins to expand RStudio functionalities Using GitHub with RStudio Modelling a recommendation engine with R Using R Markdown for static and dynamic reporting Curating a blog through RStudio Advanced statistical modelling with R and RStudio
R Cookbook
DOWNLOAD
Author : Paul Teetor
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2011-03-03
R Cookbook written by Paul Teetor and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-03 with Computers categories.
With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an experienced data programmer, it will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform other basic functions Input and output data Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals, and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data "Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language—one practical example at a time."—Jeffrey Ryan, software consultant and R package author