Data Analytics With Python

DOWNLOAD
Download Data Analytics With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Analytics With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Python For Data Analysis
DOWNLOAD
Author : Andrew Park
language : en
Publisher: Andrew Park
Release Date : 2021-04-22
Python For Data Analysis written by Andrew Park and has been published by Andrew Park this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-22 with categories.
★ 55% OFF for Bookstores! NOW at $41,97 instead of $51,97!Do you want to learn more about Data Analysis and how to master it with Python?Your Customers Will Love This Amazing Guide! Everyone talks about data today. You have probably come across the term "data" more times than you can remember in one day. Data as a concept is so wide. One thing that is true about data is that it can be used to tell a story. The story could be anything from explaining an event to predicting the future. Data is the future. Businesses, governments, organizations, criminals-everyone needs data for some reason. Entities are investing in different data approaches to help them understand their current situation, and use it to prepare for the unknown. The world of technology as we know it is evolving towards an open-source platform where people share ideas freely. This is seen as the first step towards the decentralization of ideas and eliminating unnecessary monopolies. Therefore, the data, tools, and techniques used in the analysis are easily available for anyone to interpret data sets and get relevant explanations. With Python for Data Analysis you will learn about the main steps that are needed to correctly implement Data Analysis and the procedures to help you extract the right insights from the right data. Some of the topics that we will discuss inside include: What Data Analysis is all about and why businesses are investing in this sector The 5 steps of a Data Analysis Pandas, Jupyter and PyTorch The 7 Python libraries that make Python one of the best choices for Data Analysis Neural Network How Data Visualization and Matplotlib can help you to understand the data you are working with. Some of the main industries that are using data to improve their business with 14 real-world applications And Much More! While most books focus on how to implement advanced predictive models, this book takes the time to explain the basic concepts and all the necessary steps to correctly implement Data Analysis, including Data Visualization and providing practical examples and simple coding scripts. Don't miss the opportunity to learn more about these topics. Even if you never used Data Analysis, learning it is easier than it looks, you just need the right guidance. This practical guide provides all the knowledge you need in a simple and practical way. Regardless of your previous experience, you will learn the steps of Data Analysis, how to implement them in Python, and the most important real-world applications. Would You Like To Know More? Buy it NOW and Let Your Customers Get Addicted to This Amazing Book!
Python Data Analytics
DOWNLOAD
Author : Stephen Ward
language : en
Publisher:
Release Date : 2020-10-15
Python Data Analytics written by Stephen Ward and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-15 with categories.
Unlock the programming skills you need to prepare for a lucrative career in Data Science with this comprehensive introduction to Python programming for data analytics! Are you completely new to programming and want to learn how to code, but don't know where to begin? Are you looking to upgrade your data wrangling skills to future-proof your career and break into Data Science and Analytics? If you answered yes to any of the questions above, then keep reading... Data analysis has become a huge industry with tons of career potential and will remain relevant far into the foreseeable future. With the exponential growth and explosion of new data and the focus on using data to improve customer experiences and carry out research, data analysts will be needed to process and make sense of large amounts of information, with Python being the language of choice because of its versatility. In this guide, you're going to be shown everything you need to break into the world of Data Analysis with Python. Filled with tutorials for powerful libraries and practical, hands-on exercises, you're going to learn how to aggregate, munge, analyze and visualize data in Python. Here's a sample of what you're going to discover in Python Data Analytics Why Python is the perfect language to learn if you want to break into Big Data and data analytics Core statistical models and computation methods you need to know about as a budding data analyst How to master the CSV library for reading, writing and handling tabular data Using the Xlrd library to extract data from Microsoft Excel files How to convert text to speech using the powerful Win32.com library How to use the NumPy library to carry out fundamental and basic scientific and technical computing How to use the SciPy library to carry out advanced scientific and highly technical computing Surefire ways to manipulate the easy-to-use data structures of the Pandas framework for high-performance data analysis How to plot complex data, create figures and visualize data using the Python Matplotlib library ...and tons more! If you're completely new to programming and have never written a single line of code, but want to get started, this guide is perfect for as a crash guide to getting up to speed with programming in general. Whether you're a programmer looking to switch into an exciting new field with lots of potential for the future, or a regular data analyst looking to acquire the skills needed to remain relevant in a fast-changing world, this guide will teach you how to master powerful libraries used in the real-world by experienced data scientists.
Data Analytics With Python
DOWNLOAD
Author : Frank Millstein
language : en
Publisher: Frank Millstein
Release Date : 2020-05-08
Data Analytics With Python written by Frank Millstein and has been published by Frank Millstein this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-08 with Computers categories.
Data Analytics With Python Data is the foundation of this digital age that we live in. With this book, you are going to learn how to organize and analyze data and how to interpret vast sources of information. This book covers various topics on data analytics such as data analytics applications, data analytics process, using Python for data analytics, Python libraries for data analytics and many other that will help you kick-start your data analytics journey from the very beginning. In this book you are going to learn how to use Python its tools in order to interpret data and examine those interesting data trends and information, which are important in predicting the future. Whether you are dealing with some medical data, sales data, web page data, you can use Python in order to interpret data, analyze it and obtain this valuable information. You can also use this data for creating data analytics models and predictions. Here Is A Brief Preview of What You’ll Learn In This Book… -Data analytics applications -Data analytics process -How to install and run Python -Python data structures and Python libraries -Python conditional construct and iteration -Data exploration using Pandas -Pandas series and dataframes -Data munging and distribution analysis -Carrying out binary operations -Data manipulation and categorical variable analysis -How to build a predictive model -And of course much, much more! Get this book NOW and learn more about Data Analytics With Python!
Python Data Analysis
DOWNLOAD
Author : Avinash Navlani
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-02-05
Python Data Analysis written by Avinash Navlani and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-05 with Computers categories.
Understand data analysis pipelines using machine learning algorithms and techniques with this practical guide Key FeaturesPrepare and clean your data to use it for exploratory analysis, data manipulation, and data wranglingDiscover supervised, unsupervised, probabilistic, and Bayesian machine learning methodsGet to grips with graph processing and sentiment analysisBook Description Data analysis enables you to generate value from small and big data by discovering new patterns and trends, and Python is one of the most popular tools for analyzing a wide variety of data. With this book, you'll get up and running using Python for data analysis by exploring the different phases and methodologies used in data analysis and learning how to use modern libraries from the Python ecosystem to create efficient data pipelines. Starting with the essential statistical and data analysis fundamentals using Python, you'll perform complex data analysis and modeling, data manipulation, data cleaning, and data visualization using easy-to-follow examples. You'll then understand how to conduct time series analysis and signal processing using ARMA models. As you advance, you'll get to grips with smart processing and data analytics using machine learning algorithms such as regression, classification, Principal Component Analysis (PCA), and clustering. In the concluding chapters, you'll work on real-world examples to analyze textual and image data using natural language processing (NLP) and image analytics techniques, respectively. Finally, the book will demonstrate parallel computing using Dask. By the end of this data analysis book, you'll be equipped with the skills you need to prepare data for analysis and create meaningful data visualizations for forecasting values from data. What you will learnExplore data science and its various process modelsPerform data manipulation using NumPy and pandas for aggregating, cleaning, and handling missing valuesCreate interactive visualizations using Matplotlib, Seaborn, and BokehRetrieve, process, and store data in a wide range of formatsUnderstand data preprocessing and feature engineering using pandas and scikit-learnPerform time series analysis and signal processing using sunspot cycle dataAnalyze textual data and image data to perform advanced analysisGet up to speed with parallel computing using DaskWho this book is for This book is for data analysts, business analysts, statisticians, and data scientists looking to learn how to use Python for data analysis. Students and academic faculties will also find this book useful for learning and teaching Python data analysis using a hands-on approach. A basic understanding of math and working knowledge of the Python programming language will help you get started with this book.
Data Science Using Python And R
DOWNLOAD
Author : Chantal D. Larose
language : en
Publisher: John Wiley & Sons
Release Date : 2019-03-21
Data Science Using Python And R written by Chantal D. Larose and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-21 with Computers categories.
Learn data science by doing data science! Data Science Using Python and R will get you plugged into the world’s two most widespread open-source platforms for data science: Python and R. Data science is hot. Bloomberg called data scientist “the hottest job in America.” Python and R are the top two open-source data science tools in the world. In Data Science Using Python and R, you will learn step-by-step how to produce hands-on solutions to real-world business problems, using state-of-the-art techniques. Data Science Using Python and R is written for the general reader with no previous analytics or programming experience. An entire chapter is dedicated to learning the basics of Python and R. Then, each chapter presents step-by-step instructions and walkthroughs for solving data science problems using Python and R. Those with analytics experience will appreciate having a one-stop shop for learning how to do data science using Python and R. Topics covered include data preparation, exploratory data analysis, preparing to model the data, decision trees, model evaluation, misclassification costs, naïve Bayes classification, neural networks, clustering, regression modeling, dimension reduction, and association rules mining. Further, exciting new topics such as random forests and general linear models are also included. The book emphasizes data-driven error costs to enhance profitability, which avoids the common pitfalls that may cost a company millions of dollars. Data Science Using Python and R provides exercises at the end of every chapter, totaling over 500 exercises in the book. Readers will therefore have plenty of opportunity to test their newfound data science skills and expertise. In the Hands-on Analysis exercises, readers are challenged to solve interesting business problems using real-world data sets.
Python For Data Science For Dummies
DOWNLOAD
Author : John Paul Mueller
language : en
Publisher: John Wiley & Sons
Release Date : 2019-02-27
Python For Data Science For Dummies written by John Paul Mueller and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-27 with Computers categories.
The fast and easy way to learn Python programming and statistics Python is a general-purpose programming language created in the late 1980s—and named after Monty Python—that's used by thousands of people to do things from testing microchips at Intel, to powering Instagram, to building video games with the PyGame library. Python For Data Science For Dummies is written for people who are new to data analysis, and discusses the basics of Python data analysis programming and statistics. The book also discusses Google Colab, which makes it possible to write Python code in the cloud. Get started with data science and Python Visualize information Wrangle data Learn from data The book provides the statistical background needed to get started in data science programming, including probability, random distributions, hypothesis testing, confidence intervals, and building regression models for prediction.
Python For Data Analytics
DOWNLOAD
Author : Alex Root
language : en
Publisher:
Release Date : 2019-09-06
Python For Data Analytics written by Alex Root and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-06 with categories.
Learn data analysis using Python with this easy to follow beginners guide. It covers all aspects of processing, manipulation, crunching, and cleaning data using Python programming language. It has been designed to prepare you for: analyzing data creating relevant data visualizations carrying out statistical analyses for large data estimating the upcoming future trends by using current data and lots more! This book will help you learn the various parts of Python programming language, its libraries, and scientific computation using Python. Learn to practically solve extensive sets of problems related to data analysis. Python is on par with other programming languages like MATLAB, Stata, R, SAS, and others when it comes to data analysis and data visualization. Python's rich set of libraries (mainly Pandas) has grown rapidly in recent years and is considered one of the best among its competitors for tasks related to data manipulation. When combined with Python's own internal solidity, as a general purpose programming language, we can say that it is an excellent choice to build data centric web applications. You will learn how to use the essential Python libraries required for data analysis like NumPy, Pandas, matplotlib, IPython, and SciPy. Each one of them performs a particular functionality for data analysis and you will be surprised at how easy it is. So what are you waiting for? Now is your chance to learn hands on Python with ease. Click the BUY NOW button to get started on your Python journey.
Python For Data Analysis
DOWNLOAD
Author : Wes McKinney
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-09-25
Python For Data Analysis written by Wes McKinney and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-25 with Computers categories.
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Applied Data Science With Python And Jupyter
DOWNLOAD
Author : Alex Galea
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-10-31
Applied Data Science With Python And Jupyter written by Alex Galea and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-31 with Computers categories.
Become the master player of data exploration by creating reproducible data processing pipelines, visualizations, and prediction models for your applications. Key FeaturesGet up and running with the Jupyter ecosystem and some example datasetsLearn about key machine learning concepts such as SVM, KNN classifiers, and Random ForestsDiscover how you can use web scraping to gather and parse your own bespoke datasetsBook Description Getting started with data science doesn't have to be an uphill battle. Applied Data Science with Python and Jupyter is a step-by-step guide ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction to these concepts. In this book, you'll learn every aspect of the standard data workflow process, including collecting, cleaning, investigating, visualizing, and modeling data. You'll start with the basics of Jupyter, which will be the backbone of the book. After familiarizing ourselves with its standard features, you'll look at an example of it in practice with our first analysis. In the next lesson, you dive right into predictive analytics, where multiple classification algorithms are implemented. Finally, the book ends by looking at data collection techniques. You'll see how web data can be acquired with scraping techniques and via APIs, and then briefly explore interactive visualizations. What you will learnGet up and running with the Jupyter ecosystemIdentify potential areas of investigation and perform exploratory data analysisPlan a machine learning classification strategy and train classification modelsUse validation curves and dimensionality reduction to tune and enhance your modelsScrape tabular data from web pages and transform it into Pandas DataFramesCreate interactive, web-friendly visualizations to clearly communicate your findingsWho this book is for Applied Data Science with Python and Jupyter is ideal for professionals with a variety of job descriptions across a large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries such as Pandas, Matplotlib, and Pandas providing you a useful head start.
Python Data Analytics
DOWNLOAD
Author : Fabio Nelli
language : en
Publisher: Apress
Release Date : 2018-09-27
Python Data Analytics written by Fabio Nelli and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-27 with Computers categories.
Explore the latest Python tools and techniques to help you tackle the world of data acquisition and analysis. You'll review scientific computing with NumPy, visualization with matplotlib, and machine learning with scikit-learn. This revision is fully updated with new content on social media data analysis, image analysis with OpenCV, and deep learning libraries. Each chapter includes multiple examples demonstrating how to work with each library. At its heart lies the coverage of pandas, for high-performance, easy-to-use data structures and tools for data manipulation Author Fabio Nelli expertly demonstrates using Python for data processing, management, and information retrieval. Later chapters apply what you've learned to handwriting recognition and extending graphical capabilities with the JavaScript D3 library. Whether you are dealing with sales data, investment data, medical data, web page usage, or other data sets, Python Data Analytics, Second Edition is an invaluable reference with its examples of storing, accessing, and analyzing data. What You'll Learn Understand the core concepts of data analysis and the Python ecosystem Go in depth with pandas for reading, writing, and processing data Use tools and techniques for data visualization and image analysis Examine popular deep learning libraries Keras, Theano,TensorFlow, and PyTorch Who This Book Is For Experienced Python developers who need to learn about Pythonic tools for data analysis