[PDF] Data Clustering - eBooks Review

Data Clustering


Data Clustering
DOWNLOAD

Download Data Clustering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Clustering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Clustering


Data Clustering
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: CRC Press
Release Date : 2016-03-29

Data Clustering written by Charu C. Aggarwal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-29 with Business & Economics categories.


Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.



Data Clustering


Data Clustering
DOWNLOAD
Author : Guojun Gan
language : en
Publisher: SIAM
Release Date : 2007-01-01

Data Clustering written by Guojun Gan and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-01-01 with Mathematics categories.


Cluster analysis is an unsupervised process that divides a set of objects into homogeneous groups. This book starts with basic information on cluster analysis, including the classification of data and the corresponding similarity measures, followed by the presentation of over 50 clustering algorithms in groups according to some specific baseline methodologies such as hierarchical, center-based, and search-based methods. As a result, readers and users can easily identify an appropriate algorithm for their applications and compare novel ideas with existing results. The book also provides examples of clustering applications to illustrate the advantages and shortcomings of different clustering architectures and algorithms. Application areas include pattern recognition, artificial intelligence, information technology, image processing, biology, psychology, and marketing. Readers also learn how to perform cluster analysis with the C/C++ and MATLAB programming languages.



Data Clustering


Data Clustering
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: CRC Press
Release Date : 2018-09-03

Data Clustering written by Charu C. Aggarwal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Business & Economics categories.


Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.



Cluster Analysis For Data Mining And System Identification


Cluster Analysis For Data Mining And System Identification
DOWNLOAD
Author : János Abonyi
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-10

Cluster Analysis For Data Mining And System Identification written by János Abonyi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-10 with Mathematics categories.


The aim of this book is to illustrate that advanced fuzzy clustering algorithms can be used not only for partitioning of the data. It can also be used for visualization, regression, classification and time-series analysis, hence fuzzy cluster analysis is a good approach to solve complex data mining and system identification problems. This book is oriented to undergraduate and postgraduate and is well suited for teaching purposes.



Data Clustering


Data Clustering
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: CRC Press
Release Date : 2018-09-03

Data Clustering written by Charu C. Aggarwal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Business & Economics categories.


Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.



Recent Applications In Data Clustering


Recent Applications In Data Clustering
DOWNLOAD
Author : Harun Pirim
language : en
Publisher: BoD – Books on Demand
Release Date : 2018-08-01

Recent Applications In Data Clustering written by Harun Pirim and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-01 with Computers categories.


Clustering has emerged as one of the more fertile fields within data analytics, widely adopted by companies, research institutions, and educational entities as a tool to describe similar/different groups. The book Recent Applications in Data Clustering aims to provide an outlook of recent contributions to the vast clustering literature that offers useful insights within the context of modern applications for professionals, academics, and students. The book spans the domains of clustering in image analysis, lexical analysis of texts, replacement of missing values in data, temporal clustering in smart cities, comparison of artificial neural network variations, graph theoretical approaches, spectral clustering, multiview clustering, and model-based clustering in an R package. Applications of image, text, face recognition, speech (synthetic and simulated), and smart city datasets are presented.



Graph Based Clustering And Data Visualization Algorithms


Graph Based Clustering And Data Visualization Algorithms
DOWNLOAD
Author : Ágnes Vathy-Fogarassy
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-05-24

Graph Based Clustering And Data Visualization Algorithms written by Ágnes Vathy-Fogarassy and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-24 with Computers categories.


This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.



Data Clustering


Data Clustering
DOWNLOAD
Author : Guojun Gan
language : en
Publisher: SIAM
Release Date : 2007-07-12

Data Clustering written by Guojun Gan and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-12 with Mathematics categories.


Reference and compendium of algorithms for pattern recognition, data mining and statistical computing.



Data Mining And Knowledge Discovery Handbook


Data Mining And Knowledge Discovery Handbook
DOWNLOAD
Author : Oded Maimon
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-05-28

Data Mining And Knowledge Discovery Handbook written by Oded Maimon and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-28 with Computers categories.


Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.



Advances In K Means Clustering


Advances In K Means Clustering
DOWNLOAD
Author : Junjie Wu
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-07-09

Advances In K Means Clustering written by Junjie Wu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-07-09 with Computers categories.


Nearly everyone knows K-means algorithm in the fields of data mining and business intelligence. But the ever-emerging data with extremely complicated characteristics bring new challenges to this "old" algorithm. This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China.