[PDF] Data Mining With Decision Trees - eBooks Review

Data Mining With Decision Trees


Data Mining With Decision Trees
DOWNLOAD

Download Data Mining With Decision Trees PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Mining With Decision Trees book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Mining With Decision Trees


Data Mining With Decision Trees
DOWNLOAD
Author : Lior Rokach
language : en
Publisher: World Scientific
Release Date : 2008

Data Mining With Decision Trees written by Lior Rokach and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Computers categories.


This is the first comprehensive book dedicated entirely to the field of decision trees in data mining and covers all aspects of this important technique. Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining, the science and technology of exploring large and complex bodies of data in order to discover useful patterns. The area is of great importance because it enables modeling and knowledge extraction from the abundance of data available. Both theoreticians and practitioners are continually seeking techniques to make the process more efficient, cost-effective and accurate. Decision trees, originally implemented in decision theory and statistics, are highly effective tools in other areas such as data mining, text mining, information extraction, machine learning, and pattern recognition. This book invites readers to explore the many benefits in data mining that decision trees offer:: Self-explanatory and easy to follow when compacted; Able to handle a variety of input data: nominal, numeric and textual; Able to process datasets that may have errors or missing values; High predictive performance for a relatively small computational effort; Available in many data mining packages over a variety of platforms; Useful for various tasks, such as classification, regression, clustering and feature selection . Sample Chapter(s). Chapter 1: Introduction to Decision Trees (245 KB). Chapter 6: Advanced Decision Trees (409 KB). Chapter 10: Fuzzy Decision Trees (220 KB). Contents: Introduction to Decision Trees; Growing Decision Trees; Evaluation of Classification Trees; Splitting Criteria; Pruning Trees; Advanced Decision Trees; Decision Forests; Incremental Learning of Decision Trees; Feature Selection; Fuzzy Decision Trees; Hybridization of Decision Trees with Other Techniques; Sequence Classification Using Decision Trees. Readership: Researchers, graduate and undergraduate students in information systems, engineering, computer science, statistics and management.



Data Mining And Predictive Analytics


Data Mining And Predictive Analytics
DOWNLOAD
Author : Daniel T. Larose
language : en
Publisher: John Wiley & Sons
Release Date : 2015-03-16

Data Mining And Predictive Analytics written by Daniel T. Larose and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-16 with Computers categories.


Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.



Lecture Notes In Data Mining


Lecture Notes In Data Mining
DOWNLOAD
Author : Michael W. Berry
language : en
Publisher: World Scientific
Release Date : 2006

Lecture Notes In Data Mining written by Michael W. Berry and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Computers categories.


The continual explosion of information technology and the need for better data collection and management methods has made data mining an even more relevant topic of study. Books on data mining tend to be either broad and introductory or focus on some very specific technical aspect of the field. This book is a series of seventeen edited OC student-authored lecturesOCO which explore in depth the core of data mining (classification, clustering and association rules) by offering overviews that include both analysis and insight. The initial chapters lay a framework of data mining techniques by explaining some of the basics such as applications of Bayes Theorem, similarity measures, and decision trees. Before focusing on the pillars of classification, clustering and association rules, the book also considers alternative candidates such as point estimation and genetic algorithms. The book''s discussion of classification includes an introduction to decision tree algorithms, rule-based algorithms (a popular alternative to decision trees) and distance-based algorithms. Five of the lecture-chapters are devoted to the concept of clustering or unsupervised classification. The functionality of hierarchical and partitional clustering algorithms is also covered as well as the efficient and scalable clustering algorithms used in large databases. The concept of association rules in terms of basic algorithms, parallel and distributive algorithms and advanced measures that help determine the value of association rules are discussed. The final chapter discusses algorithms for spatial data mining. Sample Chapter(s). Chapter 1: Point Estimation Algorithms (397 KB). Contents: Point Estimation Algorithms; Applications of Bayes Theorem; Similarity Measures; Decision Trees; Genetic Algorithms; Classification: Distance Based Algorithms; Decision Tree-Based Algorithms; Covering (Rule-Based) Algorithms; Clustering: An Overview; Clustering Hierarchical Algorithms; Clustering Partitional Algorithms; Clustering: Large Databases; Clustering Categorical Attributes; Association Rules: An Overview; Association Rules: Parallel and Distributed Algorithms; Association Rules: Advanced Techniques and Measures; Spatial Mining: Techniques and Algorithms. Readership: An introductory data mining textbook or a technical data mining book for an upper level undergraduate or graduate level course."



Data Mining With Decision Trees


Data Mining With Decision Trees
DOWNLOAD
Author : Lior Rokach
language : en
Publisher: World Scientific Publishing Company Incorporated
Release Date : 2014-09

Data Mining With Decision Trees written by Lior Rokach and has been published by World Scientific Publishing Company Incorporated this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09 with Computers categories.


Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining; it is the science of exploring large and complex bodies of data in order to discover useful patterns. Decision tree learning continues to evolve over time. Existing methods are constantly being improved and new methods introduced. This 2nd Edition is dedicated entirely to the field of decision trees in data mining; to cover all aspects of this important technique, as well as improved or new methods and techniques developed after the publication of our first edition. In this new edition, all chapters have been revised and new topics brought in. New topics include Cost-Sensitive Active Learning, Learning with Uncertain and Imbalanced Data, Using Decision Trees beyond Classification Tasks, Privacy Preserving Decision Tree Learning, Lessons Learned from Comparative Studies, and Learning Decision Trees for Big Data. A walk-through guide to existing open-source data mining software is also included in this edition. This book invites readers to explore the many benefits in data mining that decision trees offer: Self-explanatory and easy to follow when compacted Able to handle a variety of input data: nominal, numeric and textual Scales well to big data Able to process datasets that may have errors or missing values High predictive performance for a relatively small computational effort Available in many open source data mining packages over a variety of platforms Useful for various tasks, such as classification, regression, clustering and feature selection



Data Mining And Knowledge Discovery Handbook


Data Mining And Knowledge Discovery Handbook
DOWNLOAD
Author : Oded Maimon
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-05-28

Data Mining And Knowledge Discovery Handbook written by Oded Maimon and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-28 with Computers categories.


Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.



Principles Of Data Mining


Principles Of Data Mining
DOWNLOAD
Author : Max Bramer
language : en
Publisher: Springer
Release Date : 2016-11-09

Principles Of Data Mining written by Max Bramer and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-09 with Computers categories.


This book explains and explores the principal techniques of Data Mining, the automatic extraction of implicit and potentially useful information from data, which is increasingly used in commercial, scientific and other application areas. It focuses on classification, association rule mining and clustering. Each topic is clearly explained, with a focus on algorithms not mathematical formalism, and is illustrated by detailed worked examples. The book is written for readers without a strong background in mathematics or statistics and any formulae used are explained in detail. It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. As an aid to self study, this book aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field. Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included. This expanded third edition includes detailed descriptions of algorithms for classifying streaming data, both stationary data, where the underlying model is fixed, and data that is time-dependent, where the underlying model changes from time to time - a phenomenon known as concept drift.



Proactive Data Mining With Decision Trees


Proactive Data Mining With Decision Trees
DOWNLOAD
Author : Haim Dahan
language : en
Publisher: Springer Science & Business Media
Release Date : 2014-02-14

Proactive Data Mining With Decision Trees written by Haim Dahan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-02-14 with Computers categories.


This book explores a proactive and domain-driven method to classification tasks. This novel proactive approach to data mining not only induces a model for predicting or explaining a phenomenon, but also utilizes specific problem/domain knowledge to suggest specific actions to achieve optimal changes in the value of the target attribute. In particular, the authors suggest a specific implementation of the domain-driven proactive approach for classification trees. The book centers on the core idea of moving observations from one branch of the tree to another. It introduces a novel splitting criterion for decision trees, termed maximal-utility, which maximizes the potential for enhancing profitability in the output tree. Two real-world case studies, one of a leading wireless operator and the other of a major security company, are also included and demonstrate how applying the proactive approach to classification tasks can solve business problems. Proactive Data Mining with Decision Trees is intended for researchers, practitioners and advanced-level students.



R And Data Mining


R And Data Mining
DOWNLOAD
Author : Yanchang Zhao
language : en
Publisher: Academic Press
Release Date : 2012-12-31

R And Data Mining written by Yanchang Zhao and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-31 with Mathematics categories.


R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more.Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation.With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. - Presents an introduction into using R for data mining applications, covering most popular data mining techniques - Provides code examples and data so that readers can easily learn the techniques - Features case studies in real-world applications to help readers apply the techniques in their work



Interpretable Machine Learning


Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020

Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.


This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.



Evolutionary Decision Trees In Large Scale Data Mining


Evolutionary Decision Trees In Large Scale Data Mining
DOWNLOAD
Author : Marek Kretowski
language : en
Publisher: Springer
Release Date : 2019-06-05

Evolutionary Decision Trees In Large Scale Data Mining written by Marek Kretowski and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-05 with Computers categories.


This book presents a unified framework, based on specialized evolutionary algorithms, for the global induction of various types of classification and regression trees from data. The resulting univariate or oblique trees are significantly smaller than those produced by standard top-down methods, an aspect that is critical for the interpretation of mined patterns by domain analysts. The approach presented here is extremely flexible and can easily be adapted to specific data mining applications, e.g. cost-sensitive model trees for financial data or multi-test trees for gene expression data. The global induction can be efficiently applied to large-scale data without the need for extraordinary resources. With a simple GPU-based acceleration, datasets composed of millions of instances can be mined in minutes. In the event that the size of the datasets makes the fastest memory computing impossible, the Spark-based implementation on computer clusters, which offers impressive fault tolerance and scalability potential, can be applied.