Data Modeling A Beginner S Guide

DOWNLOAD
Download Data Modeling A Beginner S Guide PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Modeling A Beginner S Guide book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Data Modeling A Beginner S Guide
DOWNLOAD
Author : Andy Oppel
language : en
Publisher: McGraw Hill Professional
Release Date : 2009-11-23
Data Modeling A Beginner S Guide written by Andy Oppel and has been published by McGraw Hill Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-11-23 with Computers categories.
Essential Skills--Made Easy! Learn how to create data models that allow complex data to be analyzed, manipulated, extracted, and reported upon accurately. Data Modeling: A Beginner's Guide teaches you techniques for gathering business requirements and using them to produce conceptual, logical, and physical database designs. You'll get details on Unified Modeling Language (UML), normalization, incorporating business rules, handling temporal data, and analytical database design. The methods presented in this fast-paced tutorial are applicable to any database management system, regardless of vendor. Designed for Easy Learning Key Skills & Concepts--Chapter-opening lists of specific skills covered in the chapter Ask the expert--Q&A sections filled with bonus information and helpful tips Try This--Hands-on exercises that show you how to apply your skills Notes--Extra information related to the topic being covered Self Tests--Chapter-ending quizzes to test your knowledge Andy Oppel has taught database technology for the University of California Extension for more than 25 years. He is the author of Databases Demystified, SQL Demystified, and Databases: A Beginner's Guide, and the co-author of SQL: A Beginner's Guide, Third Edition, and SQL: The Complete Reference, Third Edition.
Data Modeling A Beginner S Guide
DOWNLOAD
Author : Andy Oppel
language : en
Publisher: Mcgraw-hill
Release Date : 2009-12-21
Data Modeling A Beginner S Guide written by Andy Oppel and has been published by Mcgraw-hill this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-12-21 with Computers categories.
Essential Skills--Made Easy! Learn how to create data models that allow complex data to be analyzed, manipulated, extracted, and reported upon accurately. Data Modeling: A Beginner's Guide teaches you techniques for gathering business requirements and using them to produce conceptual, logical, and physical database designs. You'll get details on Unified Modeling Language (UML), normalization, incorporating business rules, handling temporal data, and analytical database design. The methods presented in this fast-paced tutorial are applicable to any database management system, regardless of vendor. Designed for Easy Learning Key Skills & Concepts--Chapter-opening lists of specific skills covered in the chapter Ask the expert--Q&A sections filled with bonus information and helpful tips Try This--Hands-on exercises that show you how to apply your skills Notes--Extra information related to the topic being covered Self Tests--Chapter-ending quizzes to test your knowledge Andy Oppel has taught database technology for the University of California Extension for more than 25 years. He is the author of Databases Demystified, SQL Demystified, and Databases: A Beginner's Guide, and the co-author of SQL: A Beginner's Guide, Third Edition, and SQL: The Complete Reference, Third Edition.
Mastering Data Modeling
DOWNLOAD
Author : John Carlis
language : en
Publisher: Addison-Wesley Professional
Release Date : 2000-11-10
Mastering Data Modeling written by John Carlis and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-11-10 with Computers categories.
Data modeling is one of the most critical phases in the database application development process, but also the phase most likely to fail. A master data modeler must come into any organization, understand its data requirements, and skillfully model the data for applications that most effectively serve organizational needs. Mastering Data Modeling is a complete guide to becoming a successful data modeler. Featuring a requirements-driven approach, this book clearly explains fundamental concepts, introduces a user-oriented data modeling notation, and describes a rigorous, step-by-step process for collecting, modeling, and documenting the kinds of data that users need. Assuming no prior knowledge, Mastering Data Modeling sets forth several fundamental problems of data modeling, such as reconciling the software developer's demand for rigor with the users' equally valid need to speak their own (sometimes vague) natural language. In addition, it describes the good habits that help you respond to these fundamental problems. With these good habits in mind, the book describes the Logical Data Structure (LDS) notation and the process of controlled evolution by which you can create low-cost, user-approved data models that resist premature obsolescence. Also included is an encyclopedic analysis of all data shapes that you will encounter. Most notably, the book describes The Flow, a loosely scripted process by which you and the users gradually but continuously improve an LDS until it faithfully represents the information needs. Essential implementation and technology issues are also covered. You will learn about such vital topics as: The fundamental problems of data modeling The good habits that help a data modeler be effective and economical LDS notation, which encourages these good habits How to read an LDS aloud--in declarative English sentences How to write a well-formed (syntactically correct) LDS How to get users to name the parts of an LDS with words from their own business vocabulary How to visualize data for an LDS A catalog of LDS shapes that recur throughout all data models The Flow--the template for your conversations with users How to document an LDS for users, data modelers, and technologists How to map an LDS to a relational schema How LDS differs from other notations and why "Story interludes" appear throughout the book, illustrating real-world successes of the LDS notation and controlled evolution process. Numerous exercises help you master critical skills. In addition, two detailed, annotated sample conversations with users show you the process of controlled evolution in action.
A Developer S Guide To Data Modeling For Sql Server
DOWNLOAD
Author : Eric Johnson
language : en
Publisher: Addison-Wesley Professional
Release Date : 2008-06-24
A Developer S Guide To Data Modeling For Sql Server written by Eric Johnson and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-06-24 with Computers categories.
“ A Developer’s Guide to Data Modeling for SQL Server explains the concepts and practice of data modeling with a clarity that makes the technology accessible to anyone building databases and data-driven applications. “Eric Johnson and Joshua Jones combine a deep understanding of the science of data modeling with the art that comes with years of experience. If you’re new to data modeling, or find the need to brush up on its concepts, this book is for you.” — Peter Varhol, Executive Editor, Redmond Magazine Model SQL Server Databases That Work Better, Do More, and Evolve More Smoothly Effective data modeling is essential to ensuring that your databases will perform well, scale well, and evolve to meet changing requirements. However, if you’re modeling databases to run on Microsoft SQL Server 2008 or 2005, theoretical or platform-agnostic data modeling knowledge isn’t enough: models that don’t reflect SQL Server’s unique real-world strengths and weaknesses often lead to disastrous performance. A Developer’s Guide to Data Modeling for SQL Server is a practical, SQL Server-specific guide to data modeling for every developer, architect, and administrator. This book offers you invaluable start-to-finish guidance for designing new databases, redesigning existing SQL Server data models, and migrating databases from other platforms. You’ll begin with a concise, practical overview of the core data modeling techniques. Next, you’ll walk through requirements gathering and discover how to convert requirements into effective SQL Server logical models. Finally, you’ll systematically transform those logical models into physical models that make the most of SQL Server’s extended functionality. All of this book’s many examples are available for download from a companion Web site. This book enables you to Understand your data model’s physical elements, from storage to referential integrity Provide programmability via stored procedures, user-defined functions, triggers, and .NET CLR integration Normalize data models, one step at a time Gather and interpret requirements more effectively Learn an effective methodology for creating logical models Overcome modeling problems related to entities, attribute, data types, storage overhead, performance, and relationships Create physical models—from establishing naming guidelines through implementing business rules and constraints Use SQL Server’s unique indexing capabilities, and overcome their limitations Create abstraction layers that enhance security, extensibility, and flexibility
Data Modeling Made Simple
DOWNLOAD
Author : Steve Hoberman
language : en
Publisher: Technics Publications, LLC
Release Date : 2005
Data Modeling Made Simple written by Steve Hoberman and has been published by Technics Publications, LLC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Computers categories.
Ever have a bad data day? If you are a business user, architect, analyst, designer or developer, then you have probably had some bad data days. It comes with the territory. Overcoming these problems is much easier if you have an in-depth understanding of the actual data. That's where a data model comes in handy. It's a diagram that uses text and symbols to represent groupings of data, giving you a clear picture of your business and application environment. The book provides the tools you need to read, create and validate models of your business and applications. Contains everything about modelling you need to know but were too afraid to ask, such as: What are the traditional and non-traditional uses of a data model? How do subject area, logical, and physical data models differ? When do I build a BSAM, ASAM, or CSAM? What is the easiest way to apply normalisation? Where can I best leverage abstraction? How do I decide whether to use denormalisation or dimensionality? What are primary, foreign, alternate, virtual, and surrogate keys? What is the best approach to building the models? How can I use the Scorecard system to validate a data model? Includes over 30 exercises to reinforce concepts and sharpen your skills!
Data Modeling Made Simple With Ca Erwin Data Modeler R8
DOWNLOAD
Author : Donna Burbank
language : en
Publisher: Technics Publications
Release Date : 2011-08-01
Data Modeling Made Simple With Ca Erwin Data Modeler R8 written by Donna Burbank and has been published by Technics Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-01 with Computers categories.
Data Modeling Made Simple with CA ERwin Data Modeler r8 will provide the business or IT professional with a practical working knowledge of data modeling concepts and best practices, and how to apply these principles with CA ERwin Data Modeler r8. You’ll build many CA ERwin data models along the way, mastering first the fundamentals and later in the book the more advanced features of CA ERwin Data Modeler. This book combines real-world experience and best practices with down to earth advice, humor, and even cartoons to help you master the following ten objectives: 1. Understand the basics of data modeling and relational theory, and how to apply these skills using CA ERwin Data Modeler 2. Read a data model of any size and complexity with the same confidence as reading a book 3. Understand the difference between conceptual, logical, and physical models, and how to effectively build these models using CA ERwin’s Data Modelers Design Layer Architecture 4. Apply techniques to turn a logical data model into an efficient physical design and vice-versa through forward and reverse engineering, for both ‘top down’ and bottom-up design 5. Learn how to create reusable domains, naming standards, UDPs, and model templates in CA ERwin Data Modeler to reduce modeling time, improve data quality, and increase enterprise consistency 6. Share data model information with various audiences using model formatting and layout techniques, reporting, and metadata exchange 7. Use the new workspace customization features in CA ERwin Data Modeler r8 to create a workflow suited to your own individual needs 8. Leverage the new Bulk Editing features in CA ERwin Data Modeler r8 for mass metadata updates, as well as import/export with Microsoft Excel 9. Compare and merge model changes using CA ERwin Data Modelers Complete Compare features 10. Optimize the organization and layout of your data models through the use of Subject Areas, Diagrams, Display Themes, and more Section I provides an overview of data modeling: what it is, and why it is needed. The basic features of CA ERwin Data Modeler are introduced with a simple, easy-to-follow example. Section II introduces the basic building blocks of a data model, including entities, relationships, keys, and more. How-to examples using CA ERwin Data Modeler are provided for each of these building blocks, as well as ‘real world’ scenarios for context. Section III covers the creation of reusable standards, and their importance in the organization. From standard data modeling constructs such as domains to CA ERwin-specific features such as UDPs, this section covers step-by-step examples of how to create these standards in CA ERwin Data Modeling, from creation, to template building, to sharing standards with end users through reporting and queries. Section IV discusses conceptual, logical, and physical data models, and provides a comprehensive case study using CA ERwin Data Modeler to show the interrelationships between these models using CA ERwin’s Design Layer Architecture. Real world examples are provided from requirements gathering, to working with business sponsors, to the hands-on nitty-gritty details of building conceptual, logical, and physical data models with CA ERwin Data Modeler r8. From the Foreword by Tom Bilcze, President, CA Technologies Modeling Global User Community: Data Modeling Made Simple with CA ERwin Data Modeler r8 is an excellent resource for the ERwin community. The data modeling community is a diverse collection of data professionals with many perspectives of data modeling and different levels of skill and experience. Steve Hoberman and Donna Burbank guide newbie modelers through the basics of data modeling and CA ERwin r8. Through the liberal use of illustrations, the inexperienced data modeler is graphically walked through the components of data models and how to create them in CA ERwin r8. As an experienced data modeler, Steve and Donna give me a handbook for effectively using the new and enhanced features of this release to bring my art form to life. The book delves into advanced modeling topics and techniques by continuing the liberal use of illustrations. It speaks to the importance of a defined data modeling architecture with soundly modeled data to assist the enterprise in understanding of the value of data. It guides me in applying the finishing touches to my data designs.
Databases A Beginner S Guide
DOWNLOAD
Author : Andy Oppel
language : en
Publisher: McGraw-Hill Education
Release Date : 2009-04-13
Databases A Beginner S Guide written by Andy Oppel and has been published by McGraw-Hill Education this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-13 with Computers categories.
Essential Database Skills--Made Easy! Learn standard database design and management techniques applicable to any type of database. Featuring clear examples using both Microsoft Access and Oracle, Databases: A Beginner's Guide begins by showing you how to use Structured Query Language (SQL) to create and access database objects. Then, you'll discover how to implement logical design using normalization, transform the logical design into a physical database, and handle data and process modeling. You'll also get details on database security, online analytical processing (OLAP), connecting databases to applications, and integrating XML and object content into databases. Designed for Easy Learning Key Skills & Concepts--Chapter-opening lists of specific skills covered in the chapter Ask the Expert--Q&A sections filled with bonus information and helpful tips Try This--Hands-on exercises that show you how to apply your skills Notes--Extra information related to the topic being covered Self Tests--Chapter-ending quizzes to test your knowledge
Data Modeling Essentials
DOWNLOAD
Author : Graeme Simsion
language : en
Publisher: Elsevier
Release Date : 2004-12-03
Data Modeling Essentials written by Graeme Simsion and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-12-03 with Computers categories.
Data Modeling Essentials, Third Edition, covers the basics of data modeling while focusing on developing a facility in techniques, rather than a simple familiarization with "the rules". In order to enable students to apply the basics of data modeling to real models, the book addresses the realities of developing systems in real-world situations by assessing the merits of a variety of possible solutions as well as using language and diagramming methods that represent industry practice. This revised edition has been given significantly expanded coverage and reorganized for greater reader comprehension even as it retains its distinctive hallmarks of readability and usefulness. Beginning with the basics, the book provides a thorough grounding in theory before guiding the reader through the various stages of applied data modeling and database design. Later chapters address advanced subjects, including business rules, data warehousing, enterprise-wide modeling and data management. It includes an entirely new section discussing the development of logical and physical modeling, along with new material describing a powerful technique for model verification. It also provides an excellent resource for additional lectures and exercises. This text is the ideal reference for data modelers, data architects, database designers, DBAs, and systems analysts, as well as undergraduate and graduate-level students looking for a real-world perspective. - Thorough coverage of the fundamentals and relevant theory - Recognition and support for the creative side of the process - Expanded coverage of applied data modeling includes new chapters on logical and physical database design - New material describing a powerful technique for model verification - Unique coverage of the practical and human aspects of modeling, such as working with business specialists, managing change, and resolving conflict
The Data Modeling Handbook
DOWNLOAD
Author : Michael C. Reingruber
language : en
Publisher: John Wiley & Sons
Release Date : 1994-12-17
The Data Modeling Handbook written by Michael C. Reingruber and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994-12-17 with Computers categories.
This practical, field-tested reference doesn't just explain the characteristics of finished, high-quality data models--it shows readers exactly how to build one. It presents rules and best practices in several notations, including IDEFIX, Martin, Chen, and Finkelstein. The book offers dozens of real-world examples and go beyond basic theory to provide users with practical guidance.
Python For Data Science
DOWNLOAD
Author : Erick Thompson
language : en
Publisher:
Release Date : 2020-10-27
Python For Data Science written by Erick Thompson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-27 with categories.
Are you looking for a crash course that will help you learn Python? Do you want to master data science using python? If yes, then keep reading! Python is one of the most popular programming languages in the word in 2020 and specially for data science. Every day people use it to do cool things like Automation, they use it in Artificial Intelligence, Machine Learning, as well as Building Applications and Websites like Instagram and Dropbox. YouTube, Pinterest, and SurveyMonkey are all built on Python. So if you are looking for a trendy job, like data scientist, Python is for you. This is a Python guide with 2 Books in 1: Python crash course Python for data analysis Python has seen an explosion in popularity in recent years, driven by several aspects that make it an incredibly versatile and intuitive language. Moreover, data analysis plays a significant job in numerous parts of your regular day to day existence today. Organizations use information to Understand Their Customer Needs and produce the Best Possible Product or Service. Python Programming Language is one of the best framework with regards to information examination. Data Scientist is the most requested job of the 21st century and Python is the most popular programming language of the 21st century. So it's pretty obvious that anyone have skills in both Data Science and Python will be in great demand in industry. You needn't bother with an exhausting and costly reading material. This guide is the best one for every readers. This guide covers: The world of data science technologies Application of machine learning Data scientist: the sexiest job in the 21st century Learning Python from scratch Data analysis with Python NumPy for numerical data processing Data visualization with Python Projects on Python And much more! Despite its simplicity, Python is also sturdy and robust enough to carry out complex scientific and mathematical tasks. Python has been designed with features that drastically simplify the visualization and analysis of data, and Python is also the go-to choice for the creation of machine learning models and artificial intelligence. Be it machine learning, data analytics, data processing, web development, enterprise software development or taking the photo of Blackhole: Python is everywhere. Beloved by the data scientists and new generation developers, Pyhton will eat the word! Ready to get started? Click the BUY NOW button!