[PDF] Data Modeling For Quality - eBooks Review

Data Modeling For Quality


Data Modeling For Quality
DOWNLOAD

Download Data Modeling For Quality PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Modeling For Quality book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Modeling For Quality


Data Modeling For Quality
DOWNLOAD
Author : Graham Witt
language : en
Publisher: Technics Publications
Release Date : 2021-01-20

Data Modeling For Quality written by Graham Witt and has been published by Technics Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-20 with categories.


This book is for all data modelers, data architects, and database designers―be they novices who want to learn what's involved in data modeling, or experienced modelers who want to brush up their skills. A novice will not only gain an overview of data modeling, they will also learn how to follow the data modeling process, including the activities required for each step. The experienced practitioner will discover (or rediscover) techniques to ensure that data models accurately reflect business requirements. This book describes rigorous yet easily implemented approaches to: modeling of business information requirements for review by business stakeholders before development of the logical data model normalizing data, based on simple questions rather than the formal definitions which many modelers find intimidating naming and defining concepts and attributes modeling of time-variant data documenting business rules governing both the real world and data data modeling in an Agile project managing data model change in any type of project transforming a business information model to a logical data model against which developers can code implementing the logical data model in a traditional relational DBMS, an SQL:2003-compliant DBMS, an object-relational DBMS, or in XML. Part 1 describes business information models in-depth, including: the importance of modeling business information requirements before embarking on a logical data model business concepts (entity classes) attributes of business concepts attribute classes as an alternative to DBMS data types relationships between business concepts time-variant data generalization and specialization of business concepts naming and defining the components of the business information model business rules governing data, including a distinction between real-world rules and data rules. Part 2 journeys from requirements to a working data resource, covering: sourcing data requirements developing the business information model communicating it to business stakeholders for review, both as diagrams and verbally managing data model change transforming the business information model into a logical data model of stored data for implementation in a relational or object-relational DBMS attribute value representation and data constraints (important but often overlooked) modeling data vault, dimensional and XML data.



The Data Modeling Handbook


The Data Modeling Handbook
DOWNLOAD
Author : Michael C. Reingruber
language : en
Publisher: John Wiley & Sons
Release Date : 1994-12-17

The Data Modeling Handbook written by Michael C. Reingruber and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994-12-17 with Computers categories.


This practical, field-tested reference doesn't just explain the characteristics of finished, high-quality data models--it shows readers exactly how to build one. It presents rules and best practices in several notations, including IDEFIX, Martin, Chen, and Finkelstein. The book offers dozens of real-world examples and go beyond basic theory to provide users with practical guidance.



Patterns Of Data Modeling


Patterns Of Data Modeling
DOWNLOAD
Author : Michael Blaha
language : en
Publisher: CRC Press
Release Date : 2010-06-01

Patterns Of Data Modeling written by Michael Blaha and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-01 with Computers categories.


Best-selling author and database expert with more than 25 years of experience modeling application and enterprise data, Dr. Michael Blaha provides tried and tested data model patterns, to help readers avoid common modeling mistakes and unnecessary frustration on their way to building effective data models. Unlike the typical methodology book, Patterns of Data Modeling provides advanced techniques for those who have mastered the basics. Recognizing that database representation sets the path for software, determines its flexibility, affects its quality, and influences whether it succeeds or fails, the text focuses on databases rather than programming. It is one of the first books to apply the popular patterns perspective to database systems and data models. It offers practical advice on the core aspects of applications and provides authoritative coverage of mathematical templates, antipatterns, archetypes, identity, canonical models, and relational database design.



Data Model Scorecard


Data Model Scorecard
DOWNLOAD
Author : Steve Hoberman
language : en
Publisher: Technics Publications
Release Date : 2015-11-01

Data Model Scorecard written by Steve Hoberman and has been published by Technics Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-01 with Computers categories.


Data models are the main medium used to communicate data requirements from business to IT, and within IT from analysts, modelers, and architects, to database designers and developers. Therefore it’s essential to get the data model right. But how do you determine right? That’s where the Data Model Scorecard® comes in. The Data Model Scorecard is a data model quality scoring tool containing ten categories aimed at improving the quality of your organization’s data models. Many of my consulting assignments are dedicated to applying the Data Model Scorecard to my client’s data models – I will show you how to apply the Scorecard in this book. This book, written for people who build, use, or review data models, contains the Data Model Scorecard template and an explanation along with many examples of each of the ten Scorecard categories. There are three sections: In Section I, Data Modeling and the Need for Validation, receive a short data modeling primer in Chapter 1, understand why it is important to get the data model right in Chapter 2, and learn about the Data Model Scorecard in Chapter 3. In Section II, Data Model Scorecard Categories, we will explain each of the ten categories of the Data Model Scorecard. There are ten chapters in this section, each chapter dedicated to a specific Scorecard category: · Chapter 4: Correctness · Chapter 5: Completeness · Chapter 6: Scheme · Chapter 7: Structure · Chapter 8: Abstraction · Chapter 9: Standards · Chapter 10: Readability · Chapter 11: Definitions · Chapter 12: Consistency · Chapter 13: Data In Section III, Validating Data Models, we will prepare for the model review (Chapter 14), cover tips to help during the model review (Chapter 15), and then review a data model based upon an actual project (Chapter 16).



Mastering Data Modeling


Mastering Data Modeling
DOWNLOAD
Author : John Carlis
language : en
Publisher: Addison-Wesley Professional
Release Date : 2000-11-10

Mastering Data Modeling written by John Carlis and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-11-10 with Computers categories.


Data modeling is one of the most critical phases in the database application development process, but also the phase most likely to fail. A master data modeler must come into any organization, understand its data requirements, and skillfully model the data for applications that most effectively serve organizational needs. Mastering Data Modeling is a complete guide to becoming a successful data modeler. Featuring a requirements-driven approach, this book clearly explains fundamental concepts, introduces a user-oriented data modeling notation, and describes a rigorous, step-by-step process for collecting, modeling, and documenting the kinds of data that users need. Assuming no prior knowledge, Mastering Data Modeling sets forth several fundamental problems of data modeling, such as reconciling the software developer's demand for rigor with the users' equally valid need to speak their own (sometimes vague) natural language. In addition, it describes the good habits that help you respond to these fundamental problems. With these good habits in mind, the book describes the Logical Data Structure (LDS) notation and the process of controlled evolution by which you can create low-cost, user-approved data models that resist premature obsolescence. Also included is an encyclopedic analysis of all data shapes that you will encounter. Most notably, the book describes The Flow, a loosely scripted process by which you and the users gradually but continuously improve an LDS until it faithfully represents the information needs. Essential implementation and technology issues are also covered. You will learn about such vital topics as: The fundamental problems of data modeling The good habits that help a data modeler be effective and economical LDS notation, which encourages these good habits How to read an LDS aloud--in declarative English sentences How to write a well-formed (syntactically correct) LDS How to get users to name the parts of an LDS with words from their own business vocabulary How to visualize data for an LDS A catalog of LDS shapes that recur throughout all data models The Flow--the template for your conversations with users How to document an LDS for users, data modelers, and technologists How to map an LDS to a relational schema How LDS differs from other notations and why "Story interludes" appear throughout the book, illustrating real-world successes of the LDS notation and controlled evolution process. Numerous exercises help you master critical skills. In addition, two detailed, annotated sample conversations with users show you the process of controlled evolution in action.



Data Modeling Fundamentals


Data Modeling Fundamentals
DOWNLOAD
Author : Paulraj Ponniah
language : en
Publisher: John Wiley & Sons
Release Date : 2007-06-30

Data Modeling Fundamentals written by Paulraj Ponniah and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-30 with Computers categories.


The purpose of this book is to provide a practical approach for IT professionals to acquire the necessary knowledge and expertise in data modeling to function effectively. It begins with an overview of basic data modeling concepts, introduces the methods and techniques, provides a comprehensive case study to present the details of the data model components, covers the implementation of the data model with emphasis on quality components, and concludes with a presentation of a realistic approach to data modeling. It clearly describes how a generic data model is created to represent truly the enterprise information requirements.



The Data Model Resource Book Volume 1


The Data Model Resource Book Volume 1
DOWNLOAD
Author : Len Silverston
language : en
Publisher: Wiley
Release Date : 2001-03-21

The Data Model Resource Book Volume 1 written by Len Silverston and has been published by Wiley this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-03-21 with Computers categories.


A quick and reliable way to build proven databases for core business functions Industry experts raved about The Data Model Resource Book when it was first published in March 1997 because it provided a simple, cost-effective way to design databases for core business functions. Len Silverston has now revised and updated the hugely successful 1st Edition, while adding a companion volume to take care of more specific requirements of different businesses. This updated volume provides a common set of data models for specific core functions shared by most businesses like human resources management, accounting, and project management. These models are standardized and are easily replicated by developers looking for ways to make corporate database development more efficient and cost effective. This guide is the perfect complement to The Data Model Resource CD-ROM, which is sold separately and provides the powerful design templates discussed in the book in a ready-to-use electronic format. A free demonstration CD-ROM is available with each copy of the print book to allow you to try before you buy the full CD-ROM.



Data Quality


Data Quality
DOWNLOAD
Author : Carlo Batini
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-09-27

Data Quality written by Carlo Batini and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-09-27 with Computers categories.


Poor data quality can seriously hinder or damage the efficiency and effectiveness of organizations and businesses. The growing awareness of such repercussions has led to major public initiatives like the "Data Quality Act" in the USA and the "European 2003/98" directive of the European Parliament. Batini and Scannapieco present a comprehensive and systematic introduction to the wide set of issues related to data quality. They start with a detailed description of different data quality dimensions, like accuracy, completeness, and consistency, and their importance in different types of data, like federated data, web data, or time-dependent data, and in different data categories classified according to frequency of change, like stable, long-term, and frequently changing data. The book's extensive description of techniques and methodologies from core data quality research as well as from related fields like data mining, probability theory, statistical data analysis, and machine learning gives an excellent overview of the current state of the art. The presentation is completed by a short description and critical comparison of tools and practical methodologies, which will help readers to resolve their own quality problems. This book is an ideal combination of the soundness of theoretical foundations and the applicability of practical approaches. It is ideally suited for everyone – researchers, students, or professionals – interested in a comprehensive overview of data quality issues. In addition, it will serve as the basis for an introductory course or for self-study on this topic.



Data Modeling Made Simple With Ca Erwin Data Modeler R8


Data Modeling Made Simple With Ca Erwin Data Modeler R8
DOWNLOAD
Author : Donna Burbank
language : en
Publisher: Technics Publications
Release Date : 2011-08-01

Data Modeling Made Simple With Ca Erwin Data Modeler R8 written by Donna Burbank and has been published by Technics Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-01 with Computers categories.


Data Modeling Made Simple with CA ERwin Data Modeler r8 will provide the business or IT professional with a practical working knowledge of data modeling concepts and best practices, and how to apply these principles with CA ERwin Data Modeler r8. You’ll build many CA ERwin data models along the way, mastering first the fundamentals and later in the book the more advanced features of CA ERwin Data Modeler. This book combines real-world experience and best practices with down to earth advice, humor, and even cartoons to help you master the following ten objectives: 1. Understand the basics of data modeling and relational theory, and how to apply these skills using CA ERwin Data Modeler 2. Read a data model of any size and complexity with the same confidence as reading a book 3. Understand the difference between conceptual, logical, and physical models, and how to effectively build these models using CA ERwin’s Data Modelers Design Layer Architecture 4. Apply techniques to turn a logical data model into an efficient physical design and vice-versa through forward and reverse engineering, for both ‘top down’ and bottom-up design 5. Learn how to create reusable domains, naming standards, UDPs, and model templates in CA ERwin Data Modeler to reduce modeling time, improve data quality, and increase enterprise consistency 6. Share data model information with various audiences using model formatting and layout techniques, reporting, and metadata exchange 7. Use the new workspace customization features in CA ERwin Data Modeler r8 to create a workflow suited to your own individual needs 8. Leverage the new Bulk Editing features in CA ERwin Data Modeler r8 for mass metadata updates, as well as import/export with Microsoft Excel 9. Compare and merge model changes using CA ERwin Data Modelers Complete Compare features 10. Optimize the organization and layout of your data models through the use of Subject Areas, Diagrams, Display Themes, and more Section I provides an overview of data modeling: what it is, and why it is needed. The basic features of CA ERwin Data Modeler are introduced with a simple, easy-to-follow example. Section II introduces the basic building blocks of a data model, including entities, relationships, keys, and more. How-to examples using CA ERwin Data Modeler are provided for each of these building blocks, as well as ‘real world’ scenarios for context. Section III covers the creation of reusable standards, and their importance in the organization. From standard data modeling constructs such as domains to CA ERwin-specific features such as UDPs, this section covers step-by-step examples of how to create these standards in CA ERwin Data Modeling, from creation, to template building, to sharing standards with end users through reporting and queries. Section IV discusses conceptual, logical, and physical data models, and provides a comprehensive case study using CA ERwin Data Modeler to show the interrelationships between these models using CA ERwin’s Design Layer Architecture. Real world examples are provided from requirements gathering, to working with business sponsors, to the hands-on nitty-gritty details of building conceptual, logical, and physical data models with CA ERwin Data Modeler r8. From the Foreword by Tom Bilcze, President, CA Technologies Modeling Global User Community: Data Modeling Made Simple with CA ERwin Data Modeler r8 is an excellent resource for the ERwin community. The data modeling community is a diverse collection of data professionals with many perspectives of data modeling and different levels of skill and experience. Steve Hoberman and Donna Burbank guide newbie modelers through the basics of data modeling and CA ERwin r8. Through the liberal use of illustrations, the inexperienced data modeler is graphically walked through the components of data models and how to create them in CA ERwin r8. As an experienced data modeler, Steve and Donna give me a handbook for effectively using the new and enhanced features of this release to bring my art form to life. The book delves into advanced modeling topics and techniques by continuing the liberal use of illustrations. It speaks to the importance of a defined data modeling architecture with soundly modeled data to assist the enterprise in understanding of the value of data. It guides me in applying the finishing touches to my data designs.