[PDF] Data Pipelines Pocket Reference - eBooks Review

Data Pipelines Pocket Reference


Data Pipelines Pocket Reference
DOWNLOAD

Download Data Pipelines Pocket Reference PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Pipelines Pocket Reference book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Pipelines Pocket Reference


Data Pipelines Pocket Reference
DOWNLOAD
Author : James Densmore
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-02-10

Data Pipelines Pocket Reference written by James Densmore and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-10 with Computers categories.


Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting



Data Pipelines Pocket Reference


Data Pipelines Pocket Reference
DOWNLOAD
Author : James Densmore
language : en
Publisher:
Release Date : 2021

Data Pipelines Pocket Reference written by James Densmore and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.


Data pipelines are the foundation for success in data analytics and machine learning. Moving data from many diverse sources and processing it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as data pipeline design patterns, data ingestion implementation, data transformation, the orchestration of pipelines, and build versus buy decision making. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support machine learning and analytics needs Considerations for pipeline maintenance, testing, and alerting.



Machine Learning Pocket Reference


Machine Learning Pocket Reference
DOWNLOAD
Author : Matthew Harrison
language : en
Publisher:
Release Date : 2019

Machine Learning Pocket Reference written by Matthew Harrison and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Machine learning categories.


With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project. Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You'll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics. This pocket reference includes sections that cover: Classification, using the Titanic dataset Cleaning data and dealing with missing data Exploratory data analysis Common preprocessing steps using sample data Selecting features useful to the model Model selection Metrics and classification evaluation Regression examples using k-nearest neighbor, decision trees, boosting, and more Metrics for regression evaluation Clustering Dimensionality reduction Scikit-learn pipelines.



Data Pipelines With Apache Airflow


Data Pipelines With Apache Airflow
DOWNLOAD
Author : Bas P. Harenslak
language : en
Publisher: Simon and Schuster
Release Date : 2021-04-27

Data Pipelines With Apache Airflow written by Bas P. Harenslak and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-27 with Computers categories.


For DevOps, data engineers, machine learning engineers, and sysadmins with intermediate Python skills"--Back cover.



R Data Science Quick Reference


R Data Science Quick Reference
DOWNLOAD
Author : Thomas Mailund
language : en
Publisher: Apress
Release Date : 2019-08-07

R Data Science Quick Reference written by Thomas Mailund and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-07 with Computers categories.


In this handy, practical book you will cover each concept concisely, with many illustrative examples. You'll be introduced to several R data science packages, with examples of how to use each of them. In this book, you’ll learn about the following APIs and packages that deal specifically with data science applications: readr, dibble, forecasts, lubridate, stringr, tidyr, magnittr, dplyr, purrr, ggplot2, modelr, and more. After using this handy quick reference guide, you'll have the code, APIs, and insights to write data science-based applications in the R programming language. You'll also be able to carry out data analysis. What You Will Learn Import data with readr Work with categories using forcats, time and dates with lubridate, and strings with stringr Format data using tidyr and then transform that data using magrittr and dplyr Write functions with R for data science, data mining, and analytics-based applications Visualize data with ggplot2 and fit data to models using modelr Who This Book Is For Programmers new to R's data science, data mining, and analytics packages. Some prior coding experience with R in general is recommended.



Data Pipelines Pocket Reference


Data Pipelines Pocket Reference
DOWNLOAD
Author : James Densmore
language : en
Publisher: O'Reilly Media
Release Date : 2021-02-10

Data Pipelines Pocket Reference written by James Densmore and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-10 with Computers categories.


Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting



Foundations For Architecting Data Solutions


Foundations For Architecting Data Solutions
DOWNLOAD
Author : Ted Malaska
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-08-29

Foundations For Architecting Data Solutions written by Ted Malaska and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-29 with Computers categories.


While many companies ponder implementation details such as distributed processing engines and algorithms for data analysis, this practical book takes a much wider view of big data development, starting with initial planning and moving diligently toward execution. Authors Ted Malaska and Jonathan Seidman guide you through the major components necessary to start, architect, and develop successful big data projects. Everyone from CIOs and COOs to lead architects and developers will explore a variety of big data architectures and applications, from massive data pipelines to web-scale applications. Each chapter addresses a piece of the software development life cycle and identifies patterns to maximize long-term success throughout the life of your project. Start the planning process by considering the key data project types Use guidelines to evaluate and select data management solutions Reduce risk related to technology, your team, and vague requirements Explore system interface design using APIs, REST, and pub/sub systems Choose the right distributed storage system for your big data system Plan and implement metadata collections for your data architecture Use data pipelines to ensure data integrity from source to final storage Evaluate the attributes of various engines for processing the data you collect



97 Things Every Data Engineer Should Know


97 Things Every Data Engineer Should Know
DOWNLOAD
Author : Tobias Macey
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-06-11

97 Things Every Data Engineer Should Know written by Tobias Macey and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-11 with Computers categories.


Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail