[PDF] Data Science Algorithms In A Week - eBooks Review

Data Science Algorithms In A Week


Data Science Algorithms In A Week
DOWNLOAD

Download Data Science Algorithms In A Week PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Science Algorithms In A Week book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Science Algorithms In A Week


Data Science Algorithms In A Week
DOWNLOAD
Author : Dávid Natingga
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-10-31

Data Science Algorithms In A Week written by Dávid Natingga and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-31 with Computers categories.


Build a strong foundation of machine learning algorithms in 7 days Key FeaturesUse Python and its wide array of machine learning libraries to build predictive models Learn the basics of the 7 most widely used machine learning algorithms within a weekKnow when and where to apply data science algorithms using this guideBook Description Machine learning applications are highly automated and self-modifying, and continue to improve over time with minimal human intervention, as they learn from the trained data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed. Through algorithmic and statistical analysis, these models can be leveraged to gain new knowledge from existing data as well. Data Science Algorithms in a Week addresses all problems related to accurate and efficient data classification and prediction. Over the course of seven days, you will be introduced to seven algorithms, along with exercises that will help you understand different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. This book also guides you in predicting data based on existing trends in your dataset. This book covers algorithms such as k-nearest neighbors, Naive Bayes, decision trees, random forest, k-means, regression, and time-series analysis. By the end of this book, you will understand how to choose machine learning algorithms for clustering, classification, and regression and know which is best suited for your problem What you will learnUnderstand how to identify a data science problem correctlyImplement well-known machine learning algorithms efficiently using PythonClassify your datasets using Naive Bayes, decision trees, and random forest with accuracyDevise an appropriate prediction solution using regressionWork with time series data to identify relevant data events and trendsCluster your data using the k-means algorithmWho this book is for This book is for aspiring data science professionals who are familiar with Python and have a little background in statistics. You’ll also find this book useful if you’re currently working with data science algorithms in some capacity and want to expand your skill set



Hands On Data Science With Anaconda


Hands On Data Science With Anaconda
DOWNLOAD
Author : Yuxing Yan
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-31

Hands On Data Science With Anaconda written by Yuxing Yan and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-31 with Computers categories.


Develop, deploy, and streamline your data science projects with the most popular end-to-end platform, Anaconda Key Features -Use Anaconda to find solutions for clustering, classification, and linear regression -Analyze your data efficiently with the most powerful data science stack -Use the Anaconda cloud to store, share, and discover projects and libraries Book Description Anaconda is an open source platform that brings together the best tools for data science professionals with more than 100 popular packages supporting Python, Scala, and R languages. Hands-On Data Science with Anaconda gets you started with Anaconda and demonstrates how you can use it to perform data science operations in the real world. The book begins with setting up the environment for Anaconda platform in order to make it accessible for tools and frameworks such as Jupyter, pandas, matplotlib, Python, R, Julia, and more. You’ll walk through package manager Conda, through which you can automatically manage all packages including cross-language dependencies, and work across Linux, macOS, and Windows. You’ll explore all the essentials of data science and linear algebra to perform data science tasks using packages such as SciPy, contrastive, scikit-learn, Rattle, and Rmixmod. Once you’re accustomed to all this, you’ll start with operations in data science such as cleaning, sorting, and data classification. You’ll move on to learning how to perform tasks such as clustering, regression, prediction, and building machine learning models and optimizing them. In addition to this, you’ll learn how to visualize data using the packages available for Julia, Python, and R. What you will learn Perform cleaning, sorting, classification, clustering, regression, and dataset modeling using Anaconda Use the package manager conda and discover, install, and use functionally efficient and scalable packages Get comfortable with heterogeneous data exploration using multiple languages within a project Perform distributed computing and use Anaconda Accelerate to optimize computational powers Discover and share packages, notebooks, and environments, and use shared project drives on Anaconda Cloud Tackle advanced data prediction problems Who this book is for Hands-On Data Science with Anaconda is for you if you are a developer who is looking for the best tools in the market to perform data science. It’s also ideal for data analysts and data science professionals who want to improve the efficiency of their data science applications by using the best libraries in multiple languages. Basic programming knowledge with R or Python and introductory knowledge of linear algebra is expected.



Algorithms


Algorithms
DOWNLOAD
Author : Robert Sedgewick
language : en
Publisher: Addison-Wesley Professional
Release Date : 2014-02-01

Algorithms written by Robert Sedgewick and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-02-01 with Computers categories.


This book is Part I of the fourth edition of Robert Sedgewick and Kevin Wayne’s Algorithms, the leading textbook on algorithms today, widely used in colleges and universities worldwide. Part I contains Chapters 1 through 3 of the book. The fourth edition of Algorithms surveys the most important computer algorithms currently in use and provides a full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing -- including fifty algorithms every programmer should know. In this edition, new Java implementations are written in an accessible modular programming style, where all of the code is exposed to the reader and ready to use. The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts. The companion web site, algs4.cs.princeton.edu contains An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related material The MOOC related to this book is accessible via the "Online Course" link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants. Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience.



Hands On Data Science For Marketing


Hands On Data Science For Marketing
DOWNLOAD
Author : Yoon Hyup Hwang
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-03-29

Hands On Data Science For Marketing written by Yoon Hyup Hwang and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-29 with Computers categories.


Optimize your marketing strategies through analytics and machine learning Key FeaturesUnderstand how data science drives successful marketing campaignsUse machine learning for better customer engagement, retention, and product recommendationsExtract insights from your data to optimize marketing strategies and increase profitabilityBook Description Regardless of company size, the adoption of data science and machine learning for marketing has been rising in the industry. With this book, you will learn to implement data science techniques to understand the drivers behind the successes and failures of marketing campaigns. This book is a comprehensive guide to help you understand and predict customer behaviors and create more effectively targeted and personalized marketing strategies. This is a practical guide to performing simple-to-advanced tasks, to extract hidden insights from the data and use them to make smart business decisions. You will understand what drives sales and increases customer engagements for your products. You will learn to implement machine learning to forecast which customers are more likely to engage with the products and have high lifetime value. This book will also show you how to use machine learning techniques to understand different customer segments and recommend the right products for each customer. Apart from learning to gain insights into consumer behavior using exploratory analysis, you will also learn the concept of A/B testing and implement it using Python and R. By the end of this book, you will be experienced enough with various data science and machine learning techniques to run and manage successful marketing campaigns for your business. What you will learnLearn how to compute and visualize marketing KPIs in Python and RMaster what drives successful marketing campaigns with data scienceUse machine learning to predict customer engagement and lifetime valueMake product recommendations that customers are most likely to buyLearn how to use A/B testing for better marketing decision makingImplement machine learning to understand different customer segmentsWho this book is for If you are a marketing professional, data scientist, engineer, or a student keen to learn how to apply data science to marketing, this book is what you need! It will be beneficial to have some basic knowledge of either Python or R to work through the examples. This book will also be beneficial for beginners as it covers basic-to-advanced data science concepts and applications in marketing with real-life examples.



Data Science Bookcamp


Data Science Bookcamp
DOWNLOAD
Author : Leonard Apeltsin
language : en
Publisher: Simon and Schuster
Release Date : 2021-12-07

Data Science Bookcamp written by Leonard Apeltsin and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-07 with Computers categories.


Learn data science with Python by building five real-world projects! Experiment with card game predictions, tracking disease outbreaks, and more, as you build a flexible and intuitive understanding of data science. In Data Science Bookcamp you will learn: - Techniques for computing and plotting probabilities - Statistical analysis using Scipy - How to organize datasets with clustering algorithms - How to visualize complex multi-variable datasets - How to train a decision tree machine learning algorithm In Data Science Bookcamp you’ll test and build your knowledge of Python with the kind of open-ended problems that professional data scientists work on every day. Downloadable data sets and thoroughly-explained solutions help you lock in what you’ve learned, building your confidence and making you ready for an exciting new data science career. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology A data science project has a lot of moving parts, and it takes practice and skill to get all the code, algorithms, datasets, formats, and visualizations working together harmoniously. This unique book guides you through five realistic projects, including tracking disease outbreaks from news headlines, analyzing social networks, and finding relevant patterns in ad click data. About the book Data Science Bookcamp doesn’t stop with surface-level theory and toy examples. As you work through each project, you’ll learn how to troubleshoot common problems like missing data, messy data, and algorithms that don’t quite fit the model you’re building. You’ll appreciate the detailed setup instructions and the fully explained solutions that highlight common failure points. In the end, you’ll be confident in your skills because you can see the results. What's inside - Web scraping - Organize datasets with clustering algorithms - Visualize complex multi-variable datasets - Train a decision tree machine learning algorithm About the reader For readers who know the basics of Python. No prior data science or machine learning skills required. About the author Leonard Apeltsin is the Head of Data Science at Anomaly, where his team applies advanced analytics to uncover healthcare fraud, waste, and abuse. Table of Contents CASE STUDY 1 FINDING THE WINNING STRATEGY IN A CARD GAME 1 Computing probabilities using Python 2 Plotting probabilities using Matplotlib 3 Running random simulations in NumPy 4 Case study 1 solution CASE STUDY 2 ASSESSING ONLINE AD CLICKS FOR SIGNIFICANCE 5 Basic probability and statistical analysis using SciPy 6 Making predictions using the central limit theorem and SciPy 7 Statistical hypothesis testing 8 Analyzing tables using Pandas 9 Case study 2 solution CASE STUDY 3 TRACKING DISEASE OUTBREAKS USING NEWS HEADLINES 10 Clustering data into groups 11 Geographic location visualization and analysis 12 Case study 3 solution CASE STUDY 4 USING ONLINE JOB POSTINGS TO IMPROVE YOUR DATA SCIENCE RESUME 13 Measuring text similarities 14 Dimension reduction of matrix data 15 NLP analysis of large text datasets 16 Extracting text from web pages 17 Case study 4 solution CASE STUDY 5 PREDICTING FUTURE FRIENDSHIPS FROM SOCIAL NETWORK DATA 18 An introduction to graph theory and network analysis 19 Dynamic graph theory techniques for node ranking and social network analysis 20 Network-driven supervised machine learning 21 Training linear classifiers with logistic regression 22 Training nonlinear classifiers with decision tree techniques 23 Case study 5 solution



Data Science Algorithms In A Week


Data Science Algorithms In A Week
DOWNLOAD
Author : David Natingga
language : en
Publisher: Packt Publishing
Release Date : 2017-08-15

Data Science Algorithms In A Week written by David Natingga and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-15 with Computers categories.


Build strong foundation of machine learning algorithms In 7 days.About This Book* Get to know seven algorithms for your data science needs in this concise, insightful guide* Ensure you're confident in the basics by learning when and where to use various data science algorithms* Learn to use machine learning algorithms in a period of just 7 daysWho This Book Is ForThis book is for aspiring data science professionals who are familiar with Python and have a statistics background. It is ideal for developers who are currently implementing one or two data science algorithms and want to learn more to expand their skill set.What You Will Learn* Find out how to classify using Naive Bayes, Decision Trees, and Random Forest to achieve accuracy to solve complex problems* Identify a data science problem correctly and devise an appropriate prediction solution using Regression and Time-series* See how to cluster data using the k-Means algorithm* Get to know how to implement the algorithms efficiently in the Python and R languagesIn DetailMachine learning applications are highly automated and self-modifying, and they continue to improve over time with minimal human intervention as they learn with more data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed that solve these problems perfectly. Data science helps you gain new knowledge from existing data through algorithmic and statistical analysis.This book will address the problems related to accurate and efficient data classification and prediction. Over the course of 7 days, you will be introduced to seven algorithms, along with exercises that will help you learn different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. You will then find out how to predict data based on the existing trends in your datasets.This book covers algorithms such as: k-Nearest Neighbors, Naive Bayes, Decision Trees, Random Forest, k-Means, Regression, and Time-series. On completion of the book, you will understand which machine learning algorithm to pick for clustering, classification, or regression and which is best suited for your problem.Style and approachMachine learning applications are highly automated and self-modifying which continue to improve over time with minimal human intervention as they learn with more data. To address the complex nature of various real world data problems, specialized machine learning algorithms have been developed that solve these problems perfectly.



Icidssd 2020


Icidssd 2020
DOWNLOAD
Author : M. Afshar Alam
language : en
Publisher: European Alliance for Innovation
Release Date : 2021-03-03

Icidssd 2020 written by M. Afshar Alam and has been published by European Alliance for Innovation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-03 with Social Science categories.


The International Conference on ICT for Digital, Smart, and Sustainable Development (ICIDSSD’20) aims to provide an annual platform for the researchers, academicians, and professionals from across the world. ICIDSSD’20, held at Jamia Hamdard, New Delhi, India, is the second international conference of this series of conferences to be held annually. The conference majorly focuses on the recent developments in the areas relating to Information and Communication Technologies and contributing to Sustainable Development. ICIDSSD’20 has attracted research papers pertaining to an array of exciting research areas. The selected papers cover a wide range of topics including but not limited to Sustainable Development, Green Computing, Smart City, Artificial Intelligence, Big Data, Machine Learning, Cloud Computing, IoT, ANN, Cyber Security, and Data Science. Papers have primarily been judged on originality, presentation, relevance, and quality of work. Papers that clearly demonstrate results have been preferred. We thank our esteemed authors for having shown confidence in us and entrusting us with the publication of their research papers. The success of the conference would not have been possible without the submission of their quality research works. We thank the members of the International Scientific Advisory Committee, Technical Program Committee and members of all the other committees for their advice, guidance, and efforts. Also, we are grateful to our technical partners and sponsors, viz. HNF, EAI, ISTE, AICTE, IIC, CSI, IETE, Department of Higher Education, MHRD and DST for sponsorship and assistance.



Hands On Exploratory Data Analysis With Python


Hands On Exploratory Data Analysis With Python
DOWNLOAD
Author : Suresh Kumar Mukhiya
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-03-27

Hands On Exploratory Data Analysis With Python written by Suresh Kumar Mukhiya and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-27 with Computers categories.


Discover techniques to summarize the characteristics of your data using PyPlot, NumPy, SciPy, and pandas Key FeaturesUnderstand the fundamental concepts of exploratory data analysis using PythonFind missing values in your data and identify the correlation between different variablesPractice graphical exploratory analysis techniques using Matplotlib and the Seaborn Python packageBook Description Exploratory Data Analysis (EDA) is an approach to data analysis that involves the application of diverse techniques to gain insights into a dataset. This book will help you gain practical knowledge of the main pillars of EDA - data cleaning, data preparation, data exploration, and data visualization. You’ll start by performing EDA using open source datasets and perform simple to advanced analyses to turn data into meaningful insights. You’ll then learn various descriptive statistical techniques to describe the basic characteristics of data and progress to performing EDA on time-series data. As you advance, you’ll learn how to implement EDA techniques for model development and evaluation and build predictive models to visualize results. Using Python for data analysis, you’ll work with real-world datasets, understand data, summarize its characteristics, and visualize it for business intelligence. By the end of this EDA book, you’ll have developed the skills required to carry out a preliminary investigation on any dataset, yield insights into data, present your results with visual aids, and build a model that correctly predicts future outcomes. What you will learnImport, clean, and explore data to perform preliminary analysis using powerful Python packagesIdentify and transform erroneous data using different data wrangling techniquesExplore the use of multiple regression to describe non-linear relationshipsDiscover hypothesis testing and explore techniques of time-series analysisUnderstand and interpret results obtained from graphical analysisBuild, train, and optimize predictive models to estimate resultsPerform complex EDA techniques on open source datasetsWho this book is for This EDA book is for anyone interested in data analysis, especially students, statisticians, data analysts, and data scientists. The practical concepts presented in this book can be applied in various disciplines to enhance decision-making processes with data analysis and synthesis. Fundamental knowledge of Python programming and statistical concepts is all you need to get started with this book.



Guide To Teaching Data Science


Guide To Teaching Data Science
DOWNLOAD
Author : Orit Hazzan
language : en
Publisher: Springer Nature
Release Date : 2023-03-20

Guide To Teaching Data Science written by Orit Hazzan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-20 with Computers categories.


Data science is a new field that touches on almost every domain of our lives, and thus it is taught in a variety of environments. Accordingly, the book is suitable for teachers and lecturers in all educational frameworks: K-12, academia and industry. This book aims at closing a significant gap in the literature on the pedagogy of data science. While there are many articles and white papers dealing with the curriculum of data science (i.e., what to teach?), the pedagogical aspect of the field (i.e., how to teach?) is almost neglected. At the same time, the importance of the pedagogical aspects of data science increases as more and more programs are currently open to a variety of people. This book provides a variety of pedagogical discussions and specific teaching methods and frameworks, as well as includes exercises, and guidelines related to many data science concepts (e.g., data thinking and the data science workflow), main machine learning algorithms and concepts (e.g., KNN, SVM, Neural Networks, performance metrics, confusion matrix, and biases) and data science professional topics (e.g., ethics, skills and research approach). Professor Orit Hazzan is a faculty member at the Technion’s Department of Education in Science and Technology since October 2000. Her research focuses on computer science, software engineering and data science education. Within this framework, she studies the cognitive and social processes on the individual, the team and the organization levels, in all kinds of organizations. Dr. Koby Mike is a Ph.D. graduate from the Technion's Department of Education in Science and Technology under the supervision of Professor Orit Hazzan. He continued his post-doc research on data science education at the Bar-Ilan University, and obtained a B.Sc. and an M.Sc. in Electrical Engineering from Tel Aviv University.



Algorithms Part Ii


Algorithms Part Ii
DOWNLOAD
Author : Robert Sedgewick
language : en
Publisher: Addison-Wesley Professional
Release Date : 2014-02-01

Algorithms Part Ii written by Robert Sedgewick and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-02-01 with Computers categories.


This book is Part II of the fourth edition of Robert Sedgewick and Kevin Wayne’s Algorithms, the leading textbook on algorithms today, widely used in colleges and universities worldwide. Part II contains Chapters 4 through 6 of the book. The fourth edition of Algorithms surveys the most important computer algorithms currently in use and provides a full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing -- including fifty algorithms every programmer should know. In this edition, new Java implementations are written in an accessible modular programming style, where all of the code is exposed to the reader and ready to use. The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts. The companion web site, algs4.cs.princeton.edu contains An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related material The MOOC related to this book is accessible via the "Online Course" link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants. Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience.