[PDF] Data Science Analytics And Machine Learning With R - eBooks Review

Data Science Analytics And Machine Learning With R


Data Science Analytics And Machine Learning With R
DOWNLOAD

Download Data Science Analytics And Machine Learning With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Science Analytics And Machine Learning With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Science Analytics And Machine Learning With R


Data Science Analytics And Machine Learning With R
DOWNLOAD
Author : Luiz Paulo Favero
language : en
Publisher: Academic Press
Release Date : 2023-01-23

Data Science Analytics And Machine Learning With R written by Luiz Paulo Favero and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-23 with Computers categories.


Data Science, Analytics and Machine Learning with R explains the principles of data mining and machine learning techniques and accentuates the importance of applied and multivariate modeling. The book emphasizes the fundamentals of each technique, with step-by-step codes and real-world examples with data from areas such as medicine and health, biology, engineering, technology and related sciences. Examples use the most recent R language syntax, with recognized robust, widespread and current packages. Code scripts are exhaustively commented, making it clear to readers what happens in each command. For data collection, readers are instructed how to build their own robots from the very beginning. In addition, an entire chapter focuses on the concept of spatial analysis, allowing readers to build their own maps through geo-referenced data (such as in epidemiologic research) and some basic statistical techniques. Other chapters cover ensemble and uplift modeling and GLMM (Generalized Linear Mixed Models) estimations, both linear and nonlinear. - Presents a comprehensive and practical overview of machine learning, data mining and AI techniques for a broad multidisciplinary audience - Serves readers who are interested in statistics, analytics and modeling, and those who wish to deepen their knowledge in programming through the use of R - Teaches readers how to apply machine learning techniques to a wide range of data and subject areas - Presents data in a graphically appealing way, promoting greater information transparency and interactive learning



Artificial Intelligence And Machine Learning


Artificial Intelligence And Machine Learning
DOWNLOAD
Author : Rohit Tanwar
language : en
Publisher: CRC Press
Release Date : 2023-12-07

Artificial Intelligence And Machine Learning written by Rohit Tanwar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-07 with Computers categories.


This book focuses on artificial intelligence (AI) and machine learning (ML) technologies and how they are progressively being incorporated into a wide range of products, including consumer gadgets, "smart" personal assistants, cutting-edge medical diagnostic systems, and quantum computing systems. This concise reference book offers a broad overview of the most important trends and discusses how these trends and technologies are being created and employed in the applications in which they are being used. Artificial Intelligence and Machine Learning: An Intelligent Perspective of Emerging Technologies offers a broad package involving the incubation of AI and ML with various emerging technologies such as Internet of Things (IoT), healthcare, smart cities, robotics, and more. The book discusses various data collection and data transformation techniques and also maps the legal and ethical issues of data-driven e-healthcare systems while covering possible ways to resolve them. The book explores different techniques on how AI can be used to create better virtual reality experiences and deals with the techniques and possible ways to merge the power of AI and IoT to create smart home appliances. With contributions from experts in the field, this reference book is useful to healthcare professionals, researchers, and students of industrial engineering, systems engineering, biomedical, computer science, electronics, and communications engineering.



Applied Data Science With R For Ai And Machine Learning


Applied Data Science With R For Ai And Machine Learning
DOWNLOAD
Author : Dr S Alex David
language : en
Publisher: Leilani Katie Publication
Release Date : 2025-05-17

Applied Data Science With R For Ai And Machine Learning written by Dr S Alex David and has been published by Leilani Katie Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-17 with Computers categories.


Dr S Alex David, Professor and Head, Department of Artificial Intelligence and Machine Learning, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, India. Dr.Konda Hari Krishna, Associate Professor, Department of Computer Science & Engineering, School of Computing, Mohan Babu University, Tirupati, Andhra Pradesh, India. Mrs.A.Bharathi, Assistant Professor, Department of Computer Science, Audisankara College of Engineering and Technology (Autonoumous), Gudur, Tirupati, Andhra Pradesh, India. Dr Almas Begum, Professor, Department of Computer Science & Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India.



Data Science Analytics And Applications


Data Science Analytics And Applications
DOWNLOAD
Author : Peter Haber
language : en
Publisher: Springer Nature
Release Date : 2022-03-29

Data Science Analytics And Applications written by Peter Haber and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-29 with Computers categories.


Organizations have moved already from the rigid structure of classical project management towards the adoption of agile approaches. This holds also true for software development projects, which need to be flexible to adopt to rapid requests of clients as well to reflect changes that are required due to architectural design decisions. With data science having established itself as corner stone within organizations and businesses, it is now imperative to perform this crucial step for analytical business processes as well. The non-deterministic nature of data science and its inherent analytical tasks require an interactive approach towards an evolutionary step-by-step development to realize core essential business applications and use cases. The 4th International Data Science Conference (iDSC) 2021 brought together researchers, scientists, and business experts to discuss means of establishing new ways of embracing agile approaches within the various domains of data science, such as machine learning and AI, data mining, or visualization and communication as well as case studies and best practices from leading research institutions and business companies. The proceedings include all full papers presented in the scientific track and the corresponding German abstracts as well as the short papers from the student track. Among the topics of interest are: Artificial Intelligence and Machine Learning Implementation of data mining processes Agile Data Science and Visualization Case Studies and Applications for Agile Data Science --- Organisationen sind bereits von der starren Struktur des klassischen Projektmanagements zu agilen Ansätzen übergegangen. Dies gilt auch für Softwareentwicklungsprojekte, die flexibel sein müssen, um schnell auf die Wünsche der Kunden reagieren zu können und um Änderungen zu berücksichtigen, die aufgrund von Architekturentscheidungen erforderlich sind. Nachdem sich die Datenwissenschaft als Eckpfeiler in Organisationen und Unternehmen etabliert hat, ist es nun zwingend erforderlich, diesen entscheidenden Schritt auch für analytische Geschäftsprozesse durchzuführen. Die nicht-deterministische Natur der Datenwissenschaft und die ihr innewohnenden analytischen Aufgaben erfordern einen interaktiven Ansatz für eine evolutionäre, schrittweise Entwicklung zur Realisierung der wichtigsten Geschäftsanwendungen und Anwendungsfälle. Die 4. Internationale Konferenz zur Datenwissenschaft (iDSC 2021) brachte Forscher, Wissenschaftler und Wirtschaftsexperten zusammen, um Möglichkeiten zu erörtern, wie neue Wege zur Umsetzung agiler Ansätze in den verschiedenen Bereichen der Datenwissenschaft, wie maschinelles Lernen und KI, Data Mining oder Visualisierung und Kommunikation, sowie Fallstudien und Best Practices von führenden Forschungseinrichtungen und Wirtschaftsunternehmen etabliert werden können. Der Tagungsband umfasst alle im wissenschaftlichen Track vorgestellten Volltexte und die Kurzbeiträge aus dem studentischen Track auf Englisch und die dazugehörigen Abstracts auf Deutsch. Zu den Themen, die sie interessieren, gehören unter anderem: Künstliche Intelligenz und Maschinelles Lernen Implementierung von Data-Mining-Prozessen Agile Datenwissenschaft und Visualisierung Fallstudien und Anwendungen für Agile Datenwissenschaft



Data Science And Analytics With Python R And Spss Programming


Data Science And Analytics With Python R And Spss Programming
DOWNLOAD
Author : V.K. Jain
language : en
Publisher: KHANNA PUBLISHING HOUSE
Release Date :

Data Science And Analytics With Python R And Spss Programming written by V.K. Jain and has been published by KHANNA PUBLISHING HOUSE this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


The Book has been written completely as per AICTE recommended syllabus on "Data Sciences". SALIENT FEATURES OF THE BOOK: Explains how data is collected, managed and stored for data science. With complete courseware for understand the key concepts in data science including their real-world applications and the toolkit used by data scientists. Implement data collection and management. Provided with state of the arts subjectwise. With all required tutorials on R, Python and Bokeh, Anaconda, IBM SPSS-21 and Matplotlib.



Practical Big Data Analytics


Practical Big Data Analytics
DOWNLOAD
Author : Nataraj Dasgupta
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-01-15

Practical Big Data Analytics written by Nataraj Dasgupta and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-15 with Computers categories.


Get command of your organizational Big Data using the power of data science and analytics Key Features A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data Book Description Big Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks. By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book. What you will learn - Get a 360-degree view into the world of Big Data, data science and machine learning - Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well as corporate IT executives - Get hands-on experience with industry-standard Big Data and machine learning tools such as Hadoop, Spark, MongoDB, KDB+ and R - Create production-grade machine learning BI Dashboards using R and R Shiny with step-by-step instructions - Learn how to combine open-source Big Data, machine learning and BI Tools to create low-cost business analytics applications - Understand corporate strategies for successful Big Data and data science projects - Go beyond general-purpose analytics to develop cutting-edge Big Data applications using emerging technologies Who this book is for The book is intended for existing and aspiring Big Data professionals who wish to become the go-to person in their organization when it comes to Big Data architecture, analytics, and governance. While no prior knowledge of Big Data or related technologies is assumed, it will be helpful to have some programming experience.



Introduction To Nfl Analytics With R


Introduction To Nfl Analytics With R
DOWNLOAD
Author : Bradley J. Congelio
language : en
Publisher: CRC Press
Release Date : 2023-12-19

Introduction To Nfl Analytics With R written by Bradley J. Congelio and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-19 with Sports & Recreation categories.


It has become difficult to ignore the analytics movement within the NFL. An increasing number of coaches openly integrate advanced numbers into their game plans, and commentators, throughout broadcasts, regularly use terms such as air yards, CPOE, and EPA on a casual basis. This rapid growth, combined with an increasing accessibility to NFL data, has helped create a burgeoning amateur analytics movement, highlighted by the NFL’s annual Big Data Bowl. Because learning a coding language can be a difficult enough endeavor, Introduction to NFL Analytics with R is purposefully written in a more informal format than readers of similar books may be accustomed to, opting to provide step-by-step instructions in a structured, jargon-free manner. Key Coverage: Installing R, RStudio, and necessary packages Working and becoming fluent in the tidyverse Finding meaning in NFL data with examples from all the functions in the nflverse family of packages Using NFL data to create eye-catching data visualizations Building statistical models starting with simple regressions and progressing to advanced machine learning models using tidymodels and eXtreme Gradient Boosting The book is written for novices of R programming all the way to more experienced coders, as well as audiences with differing expected outcomes. Professors can use Introduction to NFL Analytics with R to provide data science lessons through the lens of the NFL, while students can use it as an educational tool to create robust visualizations and machine learning models for assignments. Journalists, bloggers, and arm-chair quarterbacks alike will find the book helpful to underpin their arguments by providing hard data and visualizations to back up their claims.



Learning Social Media Analytics With R


Learning Social Media Analytics With R
DOWNLOAD
Author : Raghav Bali
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-05-26

Learning Social Media Analytics With R written by Raghav Bali and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-26 with Computers categories.


Tap into the realm of social media and unleash the power of analytics for data-driven insights using R About This Book A practical guide written to help leverage the power of the R eco-system to extract, process, analyze, visualize and model social media data Learn about data access, retrieval, cleaning, and curation methods for data originating from various social media platforms. Visualize and analyze data from social media platforms to understand and model complex relationships using various concepts and techniques such as Sentiment Analysis, Topic Modeling, Text Summarization, Recommendation Systems, Social Network Analysis, Classification, and Clustering. Who This Book Is For It is targeted at IT professionals, Data Scientists, Analysts, Developers, Machine Learning Enthusiasts, social media marketers and anyone with a keen interest in data, analytics, and generating insights from social data. Some background experience in R would be helpful, but not necessary, since this book is written keeping in mind, that readers can have varying levels of expertise. What You Will Learn Learn how to tap into data from diverse social media platforms using the R ecosystem Use social media data to formulate and solve real-world problems Analyze user social networks and communities using concepts from graph theory and network analysis Learn to detect opinion and sentiment, extract themes, topics, and trends from unstructured noisy text data from diverse social media channels Understand the art of representing actionable insights with effective visualizations Analyze data from major social media channels such as Twitter, Facebook, Flickr, Foursquare, Github, StackExchange, and so on Learn to leverage popular R packages such as ggplot2, topicmodels, caret, e1071, tm, wordcloud, twittR, Rfacebook, dplyr, reshape2, and many more In Detail The Internet has truly become humongous, especially with the rise of various forms of social media in the last decade, which give users a platform to express themselves and also communicate and collaborate with each other. This book will help the reader to understand the current social media landscape and to learn how analytics can be leveraged to derive insights from it. This data can be analyzed to gain valuable insights into the behavior and engagement of users, organizations, businesses, and brands. It will help readers frame business problems and solve them using social data. The book will also cover several practical real-world use cases on social media using R and its advanced packages to utilize data science methodologies such as sentiment analysis, topic modeling, text summarization, recommendation systems, social network analysis, classification, and clustering. This will enable readers to learn different hands-on approaches to obtain data from diverse social media sources such as Twitter and Facebook. It will also show readers how to establish detailed workflows to process, visualize, and analyze data to transform social data into actionable insights. Style and approach This book follows a step-by-step approach with detailed strategies for understanding, extracting, analyzing, visualizing, and modeling data from several major social network platforms such as Facebook, Twitter, Foursquare, Flickr, Github, and StackExchange. The chapters cover several real-world use cases and leverage data science, machine learning, network analysis, and graph theory concepts along with the R ecosystem, including popular packages such as ggplot2, caret,dplyr, topicmodels, tm, and so on.



Practical Machine Learning With Python


Practical Machine Learning With Python
DOWNLOAD
Author : Dipanjan Sarkar
language : en
Publisher: Apress
Release Date : 2017-12-20

Practical Machine Learning With Python written by Dipanjan Sarkar and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-20 with Computers categories.


Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries andframeworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students



It Startup Success From Idea To Launch


It Startup Success From Idea To Launch
DOWNLOAD
Author : Matevos Ghazaryan
language : en
Publisher: Matevos Ghazaryan
Release Date :

It Startup Success From Idea To Launch written by Matevos Ghazaryan and has been published by Matevos Ghazaryan this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


Welcome to the tech sector's world of innovation, strategy, and success. "IT Startup Success: From Idea to Launch" is designed to guide you through the complex landscape of creating and launching a technology startup. This book focuses on the critical steps, strategies, and tools for transforming a mere concept into a market-ready product. In the realm of IT startups, the journey from conception to realization is filled with challenges and opportunities. This book acknowledges the diversity of paths available to founders, including leveraging external resources, collaborations, and the latest technological tools to bring your vision to life. Whether navigating the early stages of ideation, wrestling with the intricacies of product development, or devising a go-to-market strategy, this guide is your companion through every phase. This guide is your companion through every phase. Get ready to transform your ideas into tangible solutions, unlock your entrepreneurial potential, and make your mark on the IT industry.