[PDF] Data Science In The Library - eBooks Review

Data Science In The Library


Data Science In The Library
DOWNLOAD

Download Data Science In The Library PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Science In The Library book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Science In The Library


Data Science In The Library
DOWNLOAD
Author : Joel Herndon
language : en
Publisher:
Release Date : 2022

Data Science In The Library written by Joel Herndon and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with Big data categories.


This book considers the current environment for data driven research, instruction, and consultation from a variety of faculty and library perspectives and suggests strategies for engaging with the tools and methods of data driven research.



Data Science For Librarians


Data Science For Librarians
DOWNLOAD
Author : Yunfei Du
language : en
Publisher: Libraries Unlimited
Release Date : 2020-03-26

Data Science For Librarians written by Yunfei Du and has been published by Libraries Unlimited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-26 with Computers categories.


More data, more problems -- A new strand of librarianship -- Data creation and collection -- Data for the academic librarian -- Research data services and the library ecosystem -- Data sources -- Data curation (archiving/preservation) -- Data storage, management, and retrieval -- Data analysis and visualization -- Data ethics and policies -- Data for public libraries and special libraries -- Conclusion: library, information, and data science.



Data Science And Big Data Analytics


Data Science And Big Data Analytics
DOWNLOAD
Author : EMC Education Services
language : en
Publisher: John Wiley & Sons
Release Date : 2015-01-27

Data Science And Big Data Analytics written by EMC Education Services and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-27 with Computers categories.


Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!



Graph Algorithms


Graph Algorithms
DOWNLOAD
Author : Mark Needham
language : en
Publisher: O'Reilly Media
Release Date : 2019-05-16

Graph Algorithms written by Mark Needham and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-16 with Computers categories.


Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark



Data Science For Economics And Finance


Data Science For Economics And Finance
DOWNLOAD
Author : Sergio Consoli
language : en
Publisher: Springer Nature
Release Date : 2021-06-09

Data Science For Economics And Finance written by Sergio Consoli and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-09 with Computers categories.


This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.



Python Data Science Handbook


Python Data Science Handbook
DOWNLOAD
Author : Jake VanderPlas
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-11-21

Python Data Science Handbook written by Jake VanderPlas and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-21 with Computers categories.


For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms



Big Data Applications For Improving Library Services


Big Data Applications For Improving Library Services
DOWNLOAD
Author : Sangeeta N. Dhamdhere
language : en
Publisher:
Release Date : 2020

Big Data Applications For Improving Library Services written by Sangeeta N. Dhamdhere and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Academic libraries categories.


"This book explores the application of big data in library services"--



Data Science For Librarians


Data Science For Librarians
DOWNLOAD
Author : Yunfei Du
language : en
Publisher: Bloomsbury Publishing USA
Release Date : 2020-03-26

Data Science For Librarians written by Yunfei Du and has been published by Bloomsbury Publishing USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-26 with Language Arts & Disciplines categories.


This unique textbook intersects traditional library science with data science principles that readers will find useful in implementing or improving data services within their libraries. Data Science for Librarians introduces data science to students and practitioners in library services. Writing for academic, public, and school library managers; library science students; and library and information science educators, authors Yunfei Du and Hammad Rauf Khan provide a thorough overview of conceptual and practical tools for data librarian practice. Partially due to how quickly data science evolves, libraries have yet to recognize core competencies and skills required to perform the job duties of a data librarian. As society transitions from the information age into the era of big data, librarians and information professionals require new knowledge and skills to stay current and take on new job roles, such as data librarianship. Such skills as data curation, research data management, statistical analysis, business analytics, visualization, smart city data, and learning analytics are relevant in library services today and will become increasingly so in the near future. This text serves as a tool for library and information science students and educators working on data science curriculum design.