Data Science In The Medical Field

DOWNLOAD
Download Data Science In The Medical Field PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Science In The Medical Field book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Fundamentals Of Clinical Data Science
DOWNLOAD
Author : Andre Dekker
language : en
Publisher:
Release Date : 2020-10-09
Fundamentals Of Clinical Data Science written by Andre Dekker and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-09 with Computers categories.
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book's promise is "no math, no code"and will explain the topics in a style that is optimized for a healthcare audience. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.
Handbook Of Data Science Approaches For Biomedical Engineering
DOWNLOAD
Author : Valentina Emilia Balas
language : en
Publisher: Academic Press
Release Date : 2019-11-13
Handbook Of Data Science Approaches For Biomedical Engineering written by Valentina Emilia Balas and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-13 with Science categories.
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
Data Science In The Medical Field
DOWNLOAD
Author : Seifedine Kadry
language : en
Publisher: Elsevier
Release Date : 2024-09-30
Data Science In The Medical Field written by Seifedine Kadry and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-30 with Business & Economics categories.
Data science has the potential to influence and improve fundamental services such as the healthcare sector. This book recognizes this fact by analyzing the potential uses of data science in healthcare. Every human body produces 2 TB of data each day. This information covers brain activity, stress level, heart rate, blood sugar level, and many other things. More sophisticated technology, such as data science, allows clinicians and researchers to handle such a massive volume of data to track the health of patients. The book focuses on the potential and the tools of data science to identify the signs of illness at an extremely early stage. - Shows how improving automated analytical techniques can be used to generate new information from data for healthcare applications - Combines a number of related fields, with a particular emphasis on machine learning, big data analytics, statistics, pattern recognition, computer vision, and semantic web technologies - Provides information on the cutting-edge data science tools required to accelerate innovation for healthcare organizations and patients by reading this book
Artificial Intelligence In Medicine
DOWNLOAD
Author : David Riaño
language : en
Publisher: Springer
Release Date : 2019-06-19
Artificial Intelligence In Medicine written by David Riaño and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-19 with Computers categories.
This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.
Big Data Analytics And Intelligence
DOWNLOAD
Author : Poonam Tanwar
language : en
Publisher: Emerald Group Publishing
Release Date : 2020-09-30
Big Data Analytics And Intelligence written by Poonam Tanwar and has been published by Emerald Group Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-30 with Business & Economics categories.
Big Data Analytics and Intelligence is essential reading for researchers and experts working in the fields of health care, data science, analytics, the internet of things, and information retrieval.
Data Analytics In Biomedical Engineering And Healthcare
DOWNLOAD
Author : Kun Chang Lee
language : en
Publisher: Academic Press
Release Date : 2020-10-18
Data Analytics In Biomedical Engineering And Healthcare written by Kun Chang Lee and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-18 with Science categories.
Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. - Examines the development and application of data analytics applications in biomedical data - Presents innovative classification and regression models for predicting various diseases - Discusses genome structure prediction using predictive modeling - Shows readers how to develop clinical decision support systems - Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks
Artificial Intelligence In Healthcare
DOWNLOAD
Author : Adam Bohr
language : en
Publisher: Academic Press
Release Date : 2020-06-21
Artificial Intelligence In Healthcare written by Adam Bohr and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-21 with Computers categories.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Handbook Of Research On Data Science For Effective Healthcare Practice And Administration
DOWNLOAD
Author : Elham Akhond Zadeh Noughabi
language : en
Publisher: Medical Information Science Reference
Release Date : 2017
Handbook Of Research On Data Science For Effective Healthcare Practice And Administration written by Elham Akhond Zadeh Noughabi and has been published by Medical Information Science Reference this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Health facilities categories.
"This book is a critical reference source that overviews the state of data analysis as it relates to current practices in the health sciences field. Covering innovative topics such as linear programming, simulation modeling, network theory, and predictive analytics"--Provided by publisher.
Leveraging Data Science For Global Health
DOWNLOAD
Author : Leo Anthony Celi
language : en
Publisher: Springer Nature
Release Date : 2020-07-31
Leveraging Data Science For Global Health written by Leo Anthony Celi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-31 with Medical categories.
This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.
Data Science And Predictive Analytics
DOWNLOAD
Author : Ivo D. Dinov
language : en
Publisher: Springer Nature
Release Date : 2023-02-16
Data Science And Predictive Analytics written by Ivo D. Dinov and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-02-16 with Computers categories.
This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown notebooks. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings. Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in Data Science and Predictive Analytics address specific knowledge gaps, resolve educational barriers, and mitigate workforce information-readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical principles, modern computational methods, advanced data science techniques, model-based machine learning, model-free artificial intelligence, and innovative biomedical applications. The book’s fourteen chapters start with an introduction and progressively build foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. The second edition of the book includes additional learning-based strategies utilizing generative adversarial networks, transfer learning, and synthetic data generation, as well as eight complementary electronic appendices. This textbook is suitable for formal didactic instructor-guided course education, as well as for individual or team-supported self-learning. The material is presented at the upper-division and graduate-level college courses and covers applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide range of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory, funding, and policy agencies. The supporting book website provides many examples, datasets, functional scripts, complete electronic notebooks, extensive appendices, and additional materials.