[PDF] Database And Image Processing Using Python And Access - eBooks Review

Database And Image Processing Using Python And Access


Database And Image Processing Using Python And Access
DOWNLOAD

Download Database And Image Processing Using Python And Access PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Database And Image Processing Using Python And Access book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Database And Image Processing Using Python And Access


Database And Image Processing Using Python And Access
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: SPARTA PUBLISHING
Release Date : 2019-10-31

Database And Image Processing Using Python And Access written by Vivian Siahaan and has been published by SPARTA PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-31 with Computers categories.


The book details how programmers and database professionals can develop access-based Python applications that involves database and image processing. This book is a access database crash course which overs microsoft acces-based GUI programming using Python. In chapter one, you will learn to use several widgets in PyQt5: Display a welcome message; Use the Radio Button widget; Grouping radio buttons; Displays options in the form of a check box; and Display two groups of check boxes. In chapter two, you will learn to use the following topics: Using Signal / Slot Editor; Copy and place text from one Line Edit widget to another; Convert data types and make a simple calculator; Use the Spin Box widget; Use scrollbars and sliders; Using the Widget List; Select a number of list items from one Widget List and display them on another Widget List widget; Add items to the Widget List; Perform operations on the Widget List; Use the Combo Box widget; Displays data selected by the user from the Calendar Widget; Creating a hotel reservation application; and Display tabular data using Table Widgets. In chapter three, you will learn: How to create the initial three tables project in the School database: Teacher, Class, and Subject tables; How to create database configuration files; How to create a Python GUI for inserting and editing tables; How to create a Python GUI to join and query the three tables. In chapter four, you will learn how to: Create a main form to connect all forms; Create a project will add three more tables to the school database: Student, Parent, and Tuition tables; Create a Python GUI for inserting and editing tables; Create a Python GUI to join and query over the three tables. In chapter five, you will join the six classes, Teacher, TClass, Subject, Student, Parent, and Tuition and make queries over those tables. In chapter six, you will create dan configure database. In this chapter, you will create Suspect table in crime database. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for this table. In chapter seven, you will create a table with the name Feature_Extraction, which has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. The six fields (except keys) will have LONGBINARY data type. You will also create GUI to display, edit, insert, and delete for this table. In chapter eight, you will create two tables, Police and Investigator. The Police table has six columns: police_id (primary key), province, city, address, telephone, and photo. The Investigator table has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for both tables. In the last chapter, you will create two tables, Victim and Case_File. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File table has seven columns: case_file_id (primary key), suspect_id (foreign key), police_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. You will create GUI to display, edit, insert, and delete for both tables as well.



Practical Machine Learning And Image Processing


Practical Machine Learning And Image Processing
DOWNLOAD
Author : Himanshu Singh
language : en
Publisher: Apress
Release Date : 2019-02-26

Practical Machine Learning And Image Processing written by Himanshu Singh and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-26 with Computers categories.


Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing. The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools. All the conceptsin Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application. What You Will Learn Discover image-processing algorithms and their applications using Python Explore image processing using the OpenCV library Use TensorFlow, scikit-learn, NumPy, and other libraries Work with machine learning and deep learning algorithms for image processing Apply image-processing techniques to five real-time projects Who This Book Is For Data scientists and software developers interested in image processing and computer vision.



The Secrets Of Image Fusion Dengan Matlab Gui


The Secrets Of Image Fusion Dengan Matlab Gui
DOWNLOAD
Author : Vivian Siahaan
language : id
Publisher: BALIGE PUBLISHING
Release Date : 2020-02-17

The Secrets Of Image Fusion Dengan Matlab Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-17 with Computers categories.


Kasus 1: IMAGE FUSION DENGAN MATLAB GUI Menggunakan Transformasi Wavelet Diskret Kompleks Dual-Tree Pada kasus ini, Anda akan merancang sendiri, secara bertahap, GUI MATLAB untuk melakukan operasi fusi citra terhadap citra keabuan dan citra berwarna menggunakan metode transformasi wavelet diskret dual-tree. Ada empat jenis derau yang dipakai: Gaussin, Poisson, Salt & Pepper, dan Speckle. Beberapa kontrol GUI MATLAB yang digunakan seperti Axes, Listbox, Table, Push Button, Edit Text, Static Text, dan Panel. Hasil fusi citra (image fusion) kemudian akan ditampilkan secara visual dan enam parameter kinerja: RMSE, PFE, MAE, CORR, SNR, PSNR, akan ditampilkan pada grafik batang. Kasus 2: IMAGE FUSION DENGAN MATLAB GUI Menggunakan Transformasi Wavelet Diskret Stasioner Satu Level dan Dua Level Pada kasus ini, Anda akan merancang sendiri, secara bertahap, GUI MATLAB untuk melakukan operasi fusi citra terhadap citra keabuan dan citra berwarna menggunakan metode Transformasi Wavelet Diskret Stasioner Satu level dan Dua level. Ada empat jenis derau yang dipakai: Gaussin, Poisson, Salt & Pepper, dan Speckle. Beberapa kontrol GUI MATLAB yang digunakan seperti Axes, Listbox, Table, Push Button, Edit Text, Static Text, dan Panel. Hasil fusi citra (image fusion) kemudian akan ditampilkan secara visual dan enam parameter kinerja: RMSE, PFE, MAE, CORR, SNR, PSNR, akan ditampilkan pada grafik batang. Kasus 3: IMAGE FUSION DENGAN MATLAB GUI Menggunakan Metode Dekomposisi Nilai Singular Resolusi Jamak (MSVD, Multi-Resolution Singular Value Decomposition) Buku ini diperuntukkan bagi mereka yang suka keahlian praktis sekaligus mendapatkan keuntungan pengetahuan. Dengan tidak bertele-tele, pada buku ini, Anda akan merancang sendiri, secara bertahap, GUI MATLAB untuk melakukan operasi fusi citra terhadap citra keabuan dan citra berwarna menggunakan metode Metode Dekomposisi Nilai Singular Resolusi Jamak (MSVD, Multi-Resolution Singular Value Decomposition). Untuk menguji kehandalan metode ini, ada empat jenis derau yang dipakai: Gaussin, Poisson, Salt & Pepper, dan Speckle. Beberapa kontrol GUI MATLAB yang digunakan seperti Axes, Listbox, Table, Push Button, Edit Text, Static Text, dan Panel. Hasil fusi citra (image fusion) kemudian akan ditampilkan secara visual dan enam parameter kinerja: RMSE, PFE, MAE, CORR, SNR, PSNR, akan ditampilkan pada grafik batang. Kasus 4: IMAGE FUSION Dengan MATLAB GUI: Teknik Fusi Citra Berwarna Berbasis Transformasi Kosinus Diskret Dan Piramida Laplacian Kasus ini diperuntukkan bagi mereka yang suka keahlian praktis sekaligus mendapatkan keuntungan pengetahuan. Dengan tidak bertele-tele, pada buku ini, Anda akan merancang sendiri, secara bertahap, GUI MATLAB untuk melakukan teknik fusi citra terhadap citra keabuan dan citra berwarna menggunakan metode Teknik Fusi Citra Berbasis Transformasi Kosinus Diskret dan Piramida Laplacian. Untuk menguji kehandalan metode ini, ada empat jenis derau yang dipakai: Gaussin, Poisson, Salt & Pepper, dan Speckle. Beberapa kontrol GUI MATLAB yang digunakan seperti Axes, Listbox, Table, Push Button, Edit Text, Static Text, dan Panel. Hasil fusi citra (image fusion) kemudian akan ditampilkan secara visual dan enam parameter kinerja: RMSE, PFE, MAE, CORR, SNR, PSNR, akan ditampilkan pada grafik batang. Kasus 5: IMAGE FUSION Dengan MATLAB GUI: Teknik Fusi Citra Menggunakan Kriteria Ketajaman Berbasis Gradien Kasus ini dapat dipakai sebagai tutorial bagi mereka yang ingin bereksperimen mengembangkan GUI MATLAB, baik untuk kepentingan penelitian pemrosesan citra digital maupun kepentingan praktis lain. Buku ini dikhususkan bagi mereka yang suka keahlian praktis sekaligus mendapatkan keuntungan pengetahuan. Dengan tidak bertele-tele, pada buku ini, Anda akan merancang sendiri, secara bertahap, GUI MATLAB untuk melakukan operasi fusi citra terhadap citra keabuan dan citra berwarna menggunakan Teknik Fusi Citra Menggunakan Kriteria Ketajaman Berbasis Gradien. Untuk menguji kehandalan metode ini, ada empat jenis derau yang dipakai: Gaussin, Poisson, Salt & Pepper, dan Speckle.



Digital Video Processing Projects Using Python And Tkinter


Digital Video Processing Projects Using Python And Tkinter
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2024-03-23

Digital Video Processing Projects Using Python And Tkinter written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-23 with Computers categories.


The first project is a video player application with an additional feature to compute and display the MD5 hash of each frame in a video. The user interface is built using Tkinter, a Python GUI toolkit, providing buttons for opening a video file, playing, pausing, and stopping the video playback. Upon opening a video file, the application displays metadata such as filename, duration, resolution, FPS, and codec information in a table. The video can be navigated using a slider to seek to a specific time point. When the video is played, the application iterates through each frame, extracts it from the video clip, calculates its MD5 hash, and displays the frame along with its histogram and MD5 hash. The histogram represents the pixel intensity distribution of each color channel (red, green, blue) in the frame. The computed MD5 hash for each frame is displayed in a label below the video frame. Additionally, the frame hash along with its index is saved to a text file for further analysis or verification purposes. The class encapsulates the functionality of the application, providing methods for opening a video file, playing and controlling video playback, updating metadata, computing frame histogram, plotting histogram, calculating MD5 hash for each frame, and saving frame hashes to a file. The main function initializes the Tkinter root window, instantiates the class, and starts the Tkinter event loop to handle user interactions and update the GUI accordingly. The second project is a video player application with additional features for frame extraction and visualization of RGB histograms for each frame. Developed using Tkinter, a Python GUI toolkit, the application provides functionalities such as opening a video file, playing, pausing, and stopping video playback. The user interface includes buttons for controlling video playback, a combobox for selecting zoom scale, an entry for specifying a time point to jump to, and buttons for frame extraction and opening another instance of the application. Upon opening a video file, the application loads it using the imageio library and displays the frames in a canvas. Users can play, pause, and stop the video using dedicated buttons. The zoom scale can be adjusted, and the video can be navigated using scrollbar or time entry. Additionally, users can extract a specific frame by entering its frame number, which opens a new window displaying the extracted frame along with its RGB histograms and MD5 hash value. The class encapsulates the application's functionalities, including methods for opening a video file, playing/pausing/stopping video, updating zoom scale, displaying frames, handling mouse events for dragging and scrolling, jumping to a specified time, and extracting frames. The main function initializes the Tkinter root window and starts the application's event loop to handle user interactions and update the GUI accordingly. Users can also open multiple instances of the application simultaneously to work with different video files concurrently. The third project is a GUI application built with Tkinter for calculating hash values of video frames and displaying them in a listbox. The interface consists of different frames for video display and hash values, along with buttons for controlling video playback, calculating hashes, saving hash values to a file, and opening a new instance of the application. Users can open a video file using the "Open Video" button, after which they can play, pause, or stop the video using corresponding buttons. Upon opening a video file, the application reads frames from the video capture and displays them in the designated frame. Users can interact with the video using playback buttons to control the video's flow. Hash values for each frame are calculated using various hashing algorithms such as MD5, SHA-1, SHA-256, and others. These hash values are then displayed in the listbox, allowing users to view the hash values corresponding to each algorithm. Additionally, users can save the calculated hash values to a text file by clicking the "Save Hashes" button, providing a convenient way to store and analyze the hash data. Lastly, users can open multiple instances of the application simultaneously by clicking the "Open New Instance" button, facilitating concurrent processing of different video files. The fourth project is a GUI application developed using Tkinter for analyzing video frames through frame hashing and histogram visualization. The interface presents a canvas for displaying the video frames along with control buttons for video playback, frame extraction, and zoom control. Users can open a video file using the "Open Video" button, and the application provides functionality to play, pause, and stop the video playback. Additionally, users can jump to specific time points within the video using the time entry field and "Jump to Time" button. Upon extracting a frame, the application opens a new window displaying the selected frame along with its histogram and multiple hash values calculated using various algorithms such as MD5, SHA-1, SHA-256, and others. The histogram visualization presents the distribution of pixel values across the RGB channels, aiding in the analysis of color composition within the frame. The hash values are displayed in a listbox within the frame extraction window, providing users with comprehensive information about the frame's content and characteristics. Furthermore, users can open multiple instances of the application simultaneously, enabling concurrent analysis of different video files. The fifth project implements a video player application with edge detection capabilities using various algorithms. The application is designed using the Tkinter library for the graphical user interface (GUI). Upon execution, the user is presented with a window containing control buttons and panels for displaying the video and extracted frames. The main functionalities of the application include opening a video file, playing, pausing, and stopping the video playback. Additionally, users can jump to a specific time in the video, extract frames, and open another instance of the video player application. The video playback is displayed on a canvas, allowing for zooming in and out using a combobox to adjust the scale. One of the key features of this application is the ability to perform edge detection on frames extracted from the video. When a frame is extracted, the application displays the original frame alongside its edge detection result using various algorithms such as Canny, Sobel, Prewitt, Laplacian, Scharr, Roberts, FreiChen, Kirsch, Robinson, Gaussian, or no edge detection. Histogram plots for each RGB channel of the frame are also displayed, along with hash values computed using different hashing algorithms for integrity verification. The edge detection result and histogram plots are updated dynamically based on the selected edge detection algorithm. Overall, this application provides a convenient platform for visualizing video content and performing edge detection analysis on individual frames, making it useful for tasks such as video processing, computer vision, and image analysis. The sixth project is a Python application built using the Tkinter library for creating a graphical user interface (GUI) to play videos and apply various filtering techniques to individual frames. The application allows users to open video files in common formats such as MP4, AVI, and MKV. Once a video is opened, users can play, pause, stop, and jump to specific times within the video. The GUI consists of two main panels: one for displaying the video and another for control buttons. The video panel contains a canvas where the frames of the video are displayed. Users can zoom in or out on the video frames using a combobox, and they can also scroll horizontally through the video using a scrollbar. Control buttons such as play/pause, stop, extract frame, and open another video player are provided in the control panel. When a frame is extracted, the application opens a new window displaying the extracted frame along with options to apply various filtering methods. These methods include Gaussian blur, mean blur, median blur, bilateral filtering, non-local means denoising, anisotropic diffusion, total variation denoising, Wiener filter, adaptive thresholding, and wavelet transform. Users can select a filtering method from a dropdown menu, and the filtered result along with the histogram and hash values of the frame are displayed in real-time. The application also provides functionality to open another instance of the video player, allowing users to work with multiple videos simultaneously. Overall, this project provides a user-friendly interface for playing videos and applying filtering techniques to individual frames, making it useful for tasks such as video processing, analysis, and editing.



Data Analysis Projects With Mysql Sqlite Postgresql And Sql Server Using Python Gui


Data Analysis Projects With Mysql Sqlite Postgresql And Sql Server Using Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2022-10-26

Data Analysis Projects With Mysql Sqlite Postgresql And Sql Server Using Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-26 with Computers categories.


PROJECT 1: FULL SOURCE CODE: POSTGRESQL AND DATA SCIENCE FOR PROGRAMMERS WITH PYTHON GUI This project uses the PostgreSQL version of MySQL-based Sakila sample database which is a fictitious database designed to represent a DVD rental store. The tables of the database include film, film_category, actor, film_actor, customer, rental, payment and inventory among others. You can download the database from https://dev.mysql.com/doc/sakila/en/. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot case distribution of film release year, film rating, rental duration, and categorize film length; plot rating variable against rental_duration variable in stacked bar plots; plot length variable against rental_duration variable in stacked bar plots; read payment table; plot case distribution of Year, Day, Month, Week, and Quarter of payment; plot which year, month, week, days of week, and quarter have most payment amount; read film list by joining five tables: category, film_category, film_actor, film, and actor; plot case distribution of top 10 and bottom 10 actors; plot which film title have least and most sales; plot which actor have least and most sales; plot which film category have least and most sales; plot case distribution of top 10 and bottom 10 overdue costumers; plot which store have most sales; plot average payment amount by month with mean and EWM; and plot payment amount over June 2005. PROJECT 2: FULL SOURCE CODE: MYSQL FOR STUDENTS AND PROGRAMMERS WITH PYTHON GUI In this project, we provide you with a MySQL version of an Oracle sample database named OT which is based on a global fictitious company that sells computer hardware including storage, motherboard, RAM, video card, and CPU. The company maintains the product information such as name, description standard cost, list price, and product line. It also tracks the inventory information for all products including warehouses where products are available. Because the company operates globally, it has warehouses in various locations around the world. The company records all customer information including name, address, and website. Each customer has at least one contact person with detailed information including name, email, and phone. The company also places a credit limit on each customer to limit the amount that customer can owe. Whenever a customer issues a purchase order, a sales order is created in the database with the pending status. When the company ships the order, the order status becomes shipped. In case the customer cancels an order, the order status becomes canceled. In addition to the sales information, the employee data is recorded with some basic information such as name, email, phone, job title, manager, and hire date. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by status, top 10 sales by status, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2016, amount feature over 2017, and amount payment in all years. PROJECT 3: ZERO TO MASTERY: THE COMPLETE GUIDE TO LEARNING SQLITE AND PYTHON GUI In this project, we provide you with the SQLite version of The Oracle Database Sample Schemas that provides a common platform for examples in each release of the Oracle Database. The sample database is also a good database for practicing with SQL, especially SQLite. The detailed description of the database can be found on: http://luna-ext.di.fc.ul.pt/oracle11g/server.112/e10831/diagrams.htm#insertedID0. The four schemas are a set of interlinked schemas. This set of schemas provides a layered approach to complexity: A simple schema Human Resources (HR) is useful for introducing basic topics. An extension to this schema supports Oracle Internet Directory demos; A second schema, Order Entry (OE), is useful for dealing with matters of intermediate complexity. Many data types are available in this schema, including non-scalar data types; The Online Catalog (OC) subschema is a collection of object-relational database objects built inside the OE schema; The Product Media (PM) schema is dedicated to multimedia data types; The Sales History (SH) schema is designed to allow for demos with large amounts of data. An extension to this schema provides support for advanced analytic processing. The HR schema consists of seven tables: regions, countries, locations, departments, employees, jobs, and job_histories. This book only implements HR schema, since the other schemas will be implemented in the next books. PROJECT 4: FULL SOURCE CODE: SQL SERVER FOR STUDENTS AND DATA SCIENTISTS WITH PYTHON GUI In this project, we provide you with the SQL SERVER version of SQLite sample database named chinook. The chinook sample database is a good database for practicing with SQL, especially PostgreSQL. The detailed description of the database can be found on: https://www.sqlitetutorial.net/sqlite-sample-database/. The sample database consists of 11 tables: The employee table stores employees data such as employee id, last name, first name, etc. It also has a field named ReportsTo to specify who reports to whom; customers table stores customers data; invoices & invoice_items tables: these two tables store invoice data. The invoice table stores invoice header data and the invoice_items table stores the invoice line items data; The artist table stores artists data. It is a simple table that contains only the artist id and name; The album table stores data about a list of tracks. Each album belongs to one artist. However, one artist may have multiple albums; The media_type table stores media types such as MPEG audio and AAC audio files; genre table stores music types such as rock, jazz, metal, etc; The track table stores the data of songs. Each track belongs to one album; playlist & playlist_track tables: The playlist table store data about playlists. Each playlist contains a list of tracks. Each track may belong to multiple playlists. The relationship between the playlist table and track table is many-to-many. The playlist_track table is used to reflect this relationship. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the bottom/top 10 sales by employee, the bottom/top 10 sales by customer, the bottom/top 10 sales by customer, the bottom/top 10 sales by artist, the bottom/top 10 sales by genre, the bottom/top 10 sales by play list, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the payment amount by month with mean and EWM, the average payment amount by every month, and amount payment in all years.



Programming Computer Vision With Python


Programming Computer Vision With Python
DOWNLOAD
Author : Jan Solem
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2012-06-19

Programming Computer Vision With Python written by Jan Solem and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-19 with Computers categories.


For readers needing a basic understanding of Computer Vision's underlying theory and algorithms, this hands-on introduction is the ideal place to start. Examples written in Python are provided with modules for handling images, mathematical computing, and data mining.



Start From Scratch Digital Image Processing With Tkinter


Start From Scratch Digital Image Processing With Tkinter
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-10-21

Start From Scratch Digital Image Processing With Tkinter written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-21 with Computers categories.


"Start from Scratch: Digital Image Processing with Tkinter" is a beginner-friendly guide that delves into the basics of digital image processing using Python and Tkinter, a popular GUI library. The project is divided into distinct modules, each focusing on a specific aspect of image manipulation. The journey begins with an exploration of Image Color Space. Here, readers encounter the Main Form, which serves as the entry point to the application. It provides a user-friendly interface for loading images, selecting color spaces, and visualizing various color channels. The Fundamental Utilities play a crucial role by providing core functionalities like loading images, converting color spaces, and manipulating pixel data. The project also includes forms dedicated to displaying individual color channels and offering insights into the current color space through histograms. The Plotting Utilities module facilitates the creation of visual representations such as plots and graphs, enhancing the user's understanding of color spaces. Moving on, the Image Transformation section introduces readers to techniques like the Fast Fourier Transform (FFT). The Fast Fourier Transform Utilities module enables the implementation of FFT algorithms for converting images from spatial to frequency domains. A corresponding form allows users to view images in the frequency domain, with additional adjustments made to the plotting utilities for effective visualization. In the context of Discrete Cosine Transform (DCT), readers gain insights into algorithms and functions for transforming images. The Form for Discrete Cosine Transform aids in visualizing images in the DCT domain, while the plotting utilities are modified to accommodate these transformed images. The Discrete Sine Transform (DST) section introduces readers to DST algorithms and their role in image transformation. A dedicated form for visualizing images in the DST domain is provided, and the plotting utilities are further extended to handle these transformations effectively. Moving Average Smoothing is another critical aspect covered in the project. The Filter2D Utilities facilitate the application of moving average smoothing techniques. Additionally, metrics utilities enable the assessment of the smoothing process, with forms available for displaying both metrics and the smoothed images. Next, the project addresses Exponential Moving Average techniques, modifying the existing utilities to accommodate this specific approach. Similarly, forms for visualizing results and metrics are provided. Readers are then introduced to techniques like Median Filtering, Savitzky-Golay Filtering, and Wiener Filtering. The Filter2D Utilities are adapted to facilitate these filtering methods, and metrics utilities are employed to assess the effectiveness of each technique. Forms dedicated to each filtering method provide a platform for visualizing the results. The final section of the project explores techniques such as Total Variation Denoising, Non-Local Means Denoising, and PCA Denoising. The Filter2D Utilities are once again modified to support these denoising techniques. Metrics utilities are employed to evaluate the denoising process, and dedicated forms offer visualization capabilities. By breaking down the project into these modules, readers can systematically grasp the fundamentals of digital image processing, gradually building their skills from one concept to the next. Each section provides hands-on experience and practical knowledge, making it an ideal starting point for beginners in image processing.



Motion Analysis And Object Tracking Using Python And Tkinter


Motion Analysis And Object Tracking Using Python And Tkinter
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2024-04-04

Motion Analysis And Object Tracking Using Python And Tkinter written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-04 with Computers categories.


The first project in chapter one, gui_optical_flow_robust_local.py, showcases Dense Robust Local Optical Flow (RLOF) through a graphical user interface (GUI) built using the OpenCV library within a tkinter framework. The project's functionality and structure are comprehensively organized, starting with the importation of essential libraries such as tkinter for GUI, PIL for image processing, imageio for video file reading, and OpenCV (cv2) for optical flow computations. The VideoDenseRLOFOpticalFlow class encapsulates the application's core functionality, initializing the GUI window, managing user interactions, and processing video frames for optical flow calculation and visualization. The GUI creation involves setting up widgets to display videos and control buttons for functions like opening files, playback control, and frame navigation. Optical flow is calculated using the Farneback method, and the resulting flow is visually presented alongside the original video frame. Mouse interaction capabilities enable users to pan the video frame and zoom in using the mouse wheel. Additionally, frame navigation features facilitate moving forward or backward through the video sequence. Error handling mechanisms are in place to provide informative messages during video processing. Overall, this project offers a user-friendly interface for exploring dense optical flow in video sequences, with potential for further customization and extension in optical flow research and applications. The second project in chapter one implements a graphical user interface (GUI) application for analyzing optical flow in video files using the Kalman filter. The application is built using the Tkinter library for the GUI components and OpenCV for image processing tasks such as optical flow computation. Upon execution, the application opens a window titled "Optical Flow Analysis with Kalman Filter" and provides functionalities for loading and playing video files. Users can open a video file through the "Open Video" button, which prompts a file dialog for file selection. Once a video file is chosen, the application loads it and displays the first frame on a canvas. The GUI includes controls for adjusting parameters such as the zoom scale, step size for optical flow computation, and displacement (dx and dy) for visualizing flow vectors. Users can interactively navigate through the video frames using buttons like "Play/Pause," "Stop," "Previous Frame," and "Next Frame." Additionally, there's an option to jump to a specific time in the video. The core functionality of the application lies in the show_optical_flow method, where optical flow is calculated using the Farneback method from OpenCV. The calculated optical flow is then filtered using a Kalman filter to improve accuracy and smoothness. The Kalman filter predicts the position of flow vectors and corrects them based on the measured flow values, resulting in more stable and reliable optical flow visualization. Overall, this application provides a user-friendly interface for visualizing optical flow in video files while incorporating a Kalman filter to enhance the quality of the flow estimation. It serves as a practical tool for researchers and practitioners in computer vision and motion analysis fields. The third project in chapter one presents a GUI application for visualizing optical flow through Lucas-Kanade estimation on video data. Utilizing Tkinter for GUI elements and integrating OpenCV, NumPy, Pillow, and imageio for video processing and visualization, the application opens a window titled "Optical Flow Analysis with Lucas Kanade" upon execution. Users can interact with controls to load video files, manipulate playback, adjust visualization parameters, and navigate frames. The GUI comprises video display, control, and optical flow panels, with functionalities including video loading, playback control, frame display, Lucas-Kanade optical flow computation, and error handling for stability. The VideoLucasKanadeOpticalFlow class encapsulates the application logic, defining event handlers for user interactions and facilitating seamless video interaction until window closure. The fourth project in chapter one features a graphical user interface (GUI) for visualizing Gaussian pyramid optical flow on video files, employing Tkinter for GUI components and OpenCV for optical flow calculation. Upon execution, the application opens a window titled "Gaussian Pyramid Optical Flow," enabling users to interact with video files. Controls include options for opening videos, adjusting zoom scale, setting step size for optical flow computation, and navigating frames. The core functionality revolves around the show_optical_flow method, which computes Gaussian pyramid optical flow using the Farneback method from OpenCV. This method calculates optical flow vectors between consecutive frames, visualized via lines and circles on an empty mask image displayed alongside the original video frame, facilitating the observation of motion patterns within the video. The "Face Detection in Video Using Haar Cascade" project as first project in chapter two, is aimed at detecting faces in video streams through Haar Cascade, a machine learning-based approach for object detection. The application offers a Tkinter-based graphical user interface (GUI) featuring functionalities like opening video files, controlling playback, adjusting zoom levels, and navigating frames. Upon selecting a video file, OpenCV processes each frame using the Haar Cascade classifier to detect faces, which are then outlined with rectangles. Users can interactively play, pause, stop, and navigate through video frames, observing real-time face detection. This project serves as a simple yet effective tool for visualizing and analyzing face detection in videos, suitable for educational and practical purposes. The "Object Tracking with Lucas Kanade" project is the second project in chapter two aimed at tracking objects within video streams using the Lucas-Kanade optical flow algorithm. Built with Tkinter for the graphical user interface (GUI) and OpenCV for video processing, it offers comprehensive functionalities for efficient object tracking. The GUI setup includes buttons for opening video files, playback control, and bounding box selection around objects of interest on the video display canvas. Video loading supports various formats, and playback features enable seamless navigation through frames. The core functionality lies in object tracking using the Lucas-Kanade algorithm, where bounding box coordinates are continuously updated based on estimated motion. Real-time GUI updates display current frames, frame numbers, and tracked object bounding boxes, while error handling ensures smooth user interaction. Overall, this project provides a user-friendly interface for accurate and efficient object tracking in video streams, making it a valuable tool for various applications. The third project in chapter two offers real-time object tracking in video streams using the Lucas-Kanade algorithm with Gaussian Pyramid for robust optical flow estimation. Its Tkinter-based graphical user interface (GUI) enables users to interact with the video stream, visualize tracking processes, and control parameters effectively. Upon application launch, users access controls for video loading, zoom adjustment, playback control, frame navigation, and center coordinate display clearance. The core track_object method tracks specified objects within video frames using Lucas-Kanade optical flow with Gaussian Pyramid, continuously updating bounding box coordinates for smooth and accurate tracking. As the video plays, users observe real-time motion of the tracked object's bounding box, reflecting its movement in the scene. With efficient frame processing, display updates, and intuitive controls, the application ensures a seamless user experience, suitable for diverse object tracking tasks. The fourth project in chapter two implements object tracking through the CAMShift (Continuously Adaptive Mean Shift) algorithm within a Tkinter-based graphical user interface (GUI). CAMShift, an extension of the Mean Shift algorithm, is tailored for object tracking in computer vision applications. Upon running the script, a window titled "Object Tracking with CAMShift" emerges, housing various GUI components. Users can open a video file via the "Open Video" button, loading supported formats such as .mp4, .avi, or .mkv. Playback controls allow for video manipulation, including play, pause, stop, and frame navigation, complemented by a zoom adjustment feature. During playback, the current frame number is displayed, aiding progress tracking. The core functionality centers on object tracking, where users can draw a bounding box around the object of interest on the video canvas. The CAMShift algorithm then continuously tracks this object within the bounding box across subsequent frames, updating its position in real-time. Additionally, the GUI presents the center coordinates of the bounding box in a list box, enhancing tracking insights. In summary, this script furnishes a user-friendly platform for object tracking via the CAMShift algorithm, facilitating visualization and analysis of object movement within video files. The fifth project in chapter two implements object tracking utilizing the MeanShift algorithm within a Tkinter-based graphical user interface (GUI). The script organizes its functionalities into five components: GUI Setup, GUI Components, Video Playback and Object Tracking, Bounding Box Interaction, and Main Function and Execution. Firstly, the script initializes the GUI window and essential attributes, including video file details and tracking status. Secondly, it structures the GUI layout, incorporating panels for video display and control buttons. Thirdly, methods for video playback control and object tracking are provided, enabling functionalities like opening video files, playing/pausing, and navigating frames. The MeanShift algorithm tracks objects within bounding boxes interactively manipulated by users through click-and-drag interactions. Lastly, the main function initializes the GUI application and starts the Tkinter event loop, launching the MeanShift-based object tracking interface. Overall, the project offers an intuitive platform for video playback, object tracking, and interactive bounding box manipulation, supporting diverse computer vision applications such as object detection and surveillance. The sixth project in chapter two introduces a video processing application utilizing the Kalman Filter for precise object tracking. Implemented with Tkinter, the application offers a graphical user interface (GUI) enabling users to open video files, control playback, and navigate frames. Its core objective is to accurately track a specified object across video frames. Upon initialization, the GUI elements, including control buttons, a canvas for video display, and a list box for center coordinate representation, are set up. The Kalman Filter, initialized with appropriate matrices for prediction and correction, enhances tracking accuracy. Upon opening a video file, the application loads and displays the first frame, enabling users to manipulate playback and frame navigation. During playback, the Kalman Filter algorithm is employed for object tracking. The track_object method orchestrates this process, extracting the region of interest (ROI), calculating histograms, and applying Kalman Filter prediction and correction steps to estimate the object's position. Updated bounding box coordinates are displayed on the canvas, while center coordinates are added to the list box. Overall, this user-friendly application showcases the Kalman Filter's effectiveness in video object tracking, providing smoother and more accurate results compared to traditional methods like MeanShift.



Frame Filtering And Edges Detection Using Python And Tkinter


Frame Filtering And Edges Detection Using Python And Tkinter
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2024-04-08

Frame Filtering And Edges Detection Using Python And Tkinter written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-08 with Computers categories.


The first project, leveraging libraries like OpenCV, Pillow, imageio, and Matplotlib, offers a streamlined interface for analyzing RGB histograms from video files. The main window is initialized using the AnalyzeHistogramFrame class, where users interact with buttons, labels, and canvases. Upon loading a video file via the "Open Video" button, the open_video() method utilizes imageio to display the first frame in the GUI canvas. Playback controls such as "Play/Pause" and "Stop" manage the video's playback state, with the show_frame() method continuously updating the displayed frame. Users can engage with the frame by zooming with the mouse wheel or defining a region of interest (ROI) through click-and-drag actions. Upon releasing the mouse button, the analyze_histogram method extracts the ROI, displaying it alongside its RGB histogram in a separate window, courtesy of Matplotlib. The histogram analysis process involves plotting individual RGB channel histograms, combined into a unified histogram. These plots are converted into Tkinter-compatible images for seamless integration into the GUI, empowering users with a comprehensive tool for visualizing and exploring video frame data. The second project is a Python application built with Tkinter, a GUI library, to enable users to analyze RGB histograms of the filtered of cropped image of a certain frame. It combines several libraries like PIL, imageio, OpenCV, NumPy, and Matplotlib to provide a comprehensive interface and analytical capabilities. The application's structure revolves around a class named Filter_CroppedFrame, responsible for managing the GUI and functionalities. Initially, the script imports necessary libraries and defines the Filter_CroppedFrame class. This class initializes the main window, sets up attributes, and creates GUI elements such as buttons, comboboxes, and canvas for video display. Users can load video files using a file dialog, which triggers the open_video() method to load the video via imageio. Playback controls for play, pause, and stop are provided, managed by methods like play_video(), toggle_play_pause(), and stop_video(). The show_frame() method updates the displayed frame based on the playback state and zoom level. Interactive analysis is facilitated through user interactions like zooming and drawing bounding boxes, handled by methods such as on_mousewheel(), on_press(), on_drag(), and on_release(). After drawing a bounding box and releasing the mouse button, the analyze_histogram method is called to extract the cropped region, apply selected filters, and display the cropped image with its RGB histogram in a popup window. The application supports various filters like Gaussian, mean, median, bilateral, and wavelet transforms, applied via the apply_filter() method, with filter selection facilitated by GUI elements like comboboxes. The script concludes with a main function initializing the application by creating an instance of the Filter_CroppedFrame class and starting the main event loop, enabling seamless GUI responsiveness and analysis tasks execution. The third project centers around a GUI application designed to facilitate edge detection within cropped images sourced from video files. Developed using Tkinter, the application boasts an array of interactive elements such as buttons, labels, and comboboxes to enhance user experience and functionality. At its core, the Edges_CroppedFrame class governs the application's operations, initializing critical attributes and orchestrating the creation of graphical components. A key feature of the application lies in its robust handling of video files. Users can effortlessly load video files via a file dialog interface, leveraging the imageio library for efficient frame extraction. The seamless rendering of frames onto a Tkinter canvas forms the foundation of the GUI, allowing users to navigate frames, control video playback, and utilize zoom features through intuitive buttons and comboboxes. Central to the application's functionality is its capability for edge detection within defined regions of interest (ROIs) within frames. Leveraging the OpenCV library, the application seamlessly integrates various edge detection algorithms, including Canny, Sobel, Prewitt, Laplacian, Scharr, FreiChen, Roberts, Kirsch, and Robinson. Users can interactively select rectangular ROIs within frames using mouse-driven actions, with the application dynamically updating the displayed frame to showcase the selected ROI alongside its corresponding histogram. Furthermore, the application extends its utility by enabling concurrent processing of multiple videos. Users can spawn new instances of the application, facilitating comprehensive video analysis and edge detection tasks across different video files. This feature enhances versatility and scalability, catering to diverse user requirements and amplifying the application's utility for advanced video processing endeavors.



Data Analysis Using Jdbc And Postgresql With Object Oriented Approach And Apache Netbeans Ide


Data Analysis Using Jdbc And Postgresql With Object Oriented Approach And Apache Netbeans Ide
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-05-17

Data Analysis Using Jdbc And Postgresql With Object Oriented Approach And Apache Netbeans Ide written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-17 with Computers categories.


This book is PostgreSQL version of our previous book titled “DATA ANALYSIS USING JDBC AND MYSQL WITH OBJECT-ORIENTED APPROACH AND APACHE NETBEANS IDE”. In this project, you will use the PostgreSQL version of Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. You can download the sample database from https://viviansiahaan.blogspot.com/2023/05/data-analysis-using-jdbc-and-postgresql.html. In this project, you will design the form for every table and you will plot: the territory distribution by region; the employee distributions based on city, country, title, and region; the employee distributions based on birth date, hire date, and employee name; the employee distributions based on city, country, territory, and region; the three supplier distributions based on city, region, and country; the product distributions based on city, region, country, categorized unit price, categorized units in stock, and categorized units on order; the customer distributions based on city, region, and country; the order and freight distributions based on year, month, and week; the order and freight distributions based on day, quarter, and ship country; the order and freight distributions based on ship region, ship city, and ship name; the order and freight distributions based on shipper company, customer company, and customer city; the order and freight distributions based on customer country, employee name, and employee title; the sales distributions based on year, month, week, day, quarter, and ship country; the sales distributions based on ship region, ship city, ship name, shipper company, customer company, and customer city; the sales distributions based on customer region, customer country, employee name, employee title, employee city, and employee country; the sales distributions based on product name, category name, supplier company, supplier city, supplier region, and supplier country.