[PDF] Databricks Platform Essentials - eBooks Review

Databricks Platform Essentials


Databricks Platform Essentials
DOWNLOAD

Download Databricks Platform Essentials PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Databricks Platform Essentials book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Databricks Platform Essentials


Databricks Platform Essentials
DOWNLOAD
Author : Richard Johnson
language : en
Publisher: HiTeX Press
Release Date : 2025-06-20

Databricks Platform Essentials written by Richard Johnson and has been published by HiTeX Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-06-20 with Computers categories.


"Databricks Platform Essentials" Unlock the full potential of cloud-native analytics and intelligent data engineering with "Databricks Platform Essentials." This comprehensive guide traces the evolution of Databricks from its roots in Apache Spark to its present-day role as an industry-leading unified analytics platform. Through clear explanations of Databricks' multi-layered architecture, lakehouse paradigm, and broad multi-cloud integrations, readers gain a foundational understanding of how the platform bridges data lakes and warehouses, delivers robust security and governance, and integrates seamlessly with major cloud ecosystems. The book delves into the mechanics of the Databricks environment, covering workspace organization, collaborative development with notebooks, and sophisticated version control strategies. By detailing cluster management, autoscaling, and high-availability patterns, it equips practitioners to design resilient and cost-efficient compute infrastructures. Chapters on data engineering illustrate best practices in ingestion, ETL pipeline design, Delta Lake optimization, and operationalizing robust workflows, while advanced sections explore distributed machine learning workflows, MLOps with MLflow, responsible AI, and governance in large-scale data projects. Purpose-built for data engineers, analysts, architects, and platform administrators, "Databricks Platform Essentials" provides actionable guidance for real-time streaming, deep security and compliance controls, and the extensibility needed for complex modern data ecosystems. With practical solutions for integration, performance tuning, disaster recovery, and cost optimization, this book empowers teams to confidently deliver high-value analytics and machine learning on Databricks—at scale and with enterprise-grade reliability.



Building The Data Lakehouse


Building The Data Lakehouse
DOWNLOAD
Author : Bill Inmon
language : en
Publisher: Technics Publications
Release Date : 2021-10

Building The Data Lakehouse written by Bill Inmon and has been published by Technics Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10 with categories.


The data lakehouse is the next generation of the data warehouse and data lake, designed to meet today's complex and ever-changing analytics, machine learning, and data science requirements. Learn about the features and architecture of the data lakehouse, along with its powerful analytical infrastructure. Appreciate how the universal common connector blends structured, textual, analog, and IoT data. Maintain the lakehouse for future generations through Data Lakehouse Housekeeping and Data Future-proofing. Know how to incorporate the lakehouse into an existing data governance strategy. Incorporate data catalogs, data lineage tools, and open source software into your architecture to ensure your data scientists, analysts, and end users live happily ever after.



Beginning Apache Spark Using Azure Databricks


Beginning Apache Spark Using Azure Databricks
DOWNLOAD
Author : Robert Ilijason
language : en
Publisher: Apress
Release Date : 2020-06-11

Beginning Apache Spark Using Azure Databricks written by Robert Ilijason and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-11 with Computers categories.


Analyze vast amounts of data in record time using Apache Spark with Databricks in the Cloud. Learn the fundamentals, and more, of running analytics on large clusters in Azure and AWS, using Apache Spark with Databricks on top. Discover how to squeeze the most value out of your data at a mere fraction of what classical analytics solutions cost, while at the same time getting the results you need, incrementally faster. This book explains how the confluence of these pivotal technologies gives you enormous power, and cheaply, when it comes to huge datasets. You will begin by learning how cloud infrastructure makes it possible to scale your code to large amounts of processing units, without having to pay for the machinery in advance. From there you will learn how Apache Spark, an open source framework, can enable all those CPUs for data analytics use. Finally, you will see how services such as Databricks provide the power of Apache Spark, without you having to know anything aboutconfiguring hardware or software. By removing the need for expensive experts and hardware, your resources can instead be allocated to actually finding business value in the data. This book guides you through some advanced topics such as analytics in the cloud, data lakes, data ingestion, architecture, machine learning, and tools, including Apache Spark, Apache Hadoop, Apache Hive, Python, and SQL. Valuable exercises help reinforce what you have learned. What You Will Learn Discover the value of big data analytics that leverage the power of the cloud Get started with Databricks using SQL and Python in either Microsoft Azure or AWS Understand the underlying technology, and how the cloud and Apache Spark fit into the bigger picture See how these tools are used in the real world Run basic analytics, including machine learning, on billions of rows at a fraction of a cost or free Who This Book Is For Data engineers, data scientists, and cloud architects who want or need to run advanced analytics in the cloud. It is assumed that the reader has data experience, but perhaps minimal exposure to Apache Spark and Azure Databricks. The book is also recommended for people who want to get started in the analytics field, as it provides a strong foundation.



Learning Spark


Learning Spark
DOWNLOAD
Author : Holden Karau
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2015-01-28

Learning Spark written by Holden Karau and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-28 with Computers categories.


This book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. You'll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning.--



Spark The Definitive Guide


Spark The Definitive Guide
DOWNLOAD
Author : Bill Chambers
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-02-08

Spark The Definitive Guide written by Bill Chambers and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-08 with Computers categories.


Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation



Essential Pyspark For Scalable Data Analytics


Essential Pyspark For Scalable Data Analytics
DOWNLOAD
Author : Sreeram Nudurupati
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-10-29

Essential Pyspark For Scalable Data Analytics written by Sreeram Nudurupati and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-29 with Computers categories.


Get started with distributed computing using PySpark, a single unified framework to solve end-to-end data analytics at scale Key FeaturesDiscover how to convert huge amounts of raw data into meaningful and actionable insightsUse Spark's unified analytics engine for end-to-end analytics, from data preparation to predictive analyticsPerform data ingestion, cleansing, and integration for ML, data analytics, and data visualizationBook Description Apache Spark is a unified data analytics engine designed to process huge volumes of data quickly and efficiently. PySpark is Apache Spark's Python language API, which offers Python developers an easy-to-use scalable data analytics framework. Essential PySpark for Scalable Data Analytics starts by exploring the distributed computing paradigm and provides a high-level overview of Apache Spark. You'll begin your analytics journey with the data engineering process, learning how to perform data ingestion, cleansing, and integration at scale. This book helps you build real-time analytics pipelines that help you gain insights faster. You'll then discover methods for building cloud-based data lakes, and explore Delta Lake, which brings reliability to data lakes. The book also covers Data Lakehouse, an emerging paradigm, which combines the structure and performance of a data warehouse with the scalability of cloud-based data lakes. Later, you'll perform scalable data science and machine learning tasks using PySpark, such as data preparation, feature engineering, and model training and productionization. Finally, you'll learn ways to scale out standard Python ML libraries along with a new pandas API on top of PySpark called Koalas. By the end of this PySpark book, you'll be able to harness the power of PySpark to solve business problems. What you will learnUnderstand the role of distributed computing in the world of big dataGain an appreciation for Apache Spark as the de facto go-to for big data processingScale out your data analytics process using Apache SparkBuild data pipelines using data lakes, and perform data visualization with PySpark and Spark SQLLeverage the cloud to build truly scalable and real-time data analytics applicationsExplore the applications of data science and scalable machine learning with PySparkIntegrate your clean and curated data with BI and SQL analysis toolsWho this book is for This book is for practicing data engineers, data scientists, data analysts, and data enthusiasts who are already using data analytics to explore distributed and scalable data analytics. Basic to intermediate knowledge of the disciplines of data engineering, data science, and SQL analytics is expected. General proficiency in using any programming language, especially Python, and working knowledge of performing data analytics using frameworks such as pandas and SQL will help you to get the most out of this book.



Distributed Data Systems With Azure Databricks


Distributed Data Systems With Azure Databricks
DOWNLOAD
Author : Alan Bernardo Palacio
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-05-25

Distributed Data Systems With Azure Databricks written by Alan Bernardo Palacio and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-25 with Computers categories.


Quickly build and deploy massive data pipelines and improve productivity using Azure Databricks Key FeaturesGet to grips with the distributed training and deployment of machine learning and deep learning modelsLearn how ETLs are integrated with Azure Data Factory and Delta LakeExplore deep learning and machine learning models in a distributed computing infrastructureBook Description Microsoft Azure Databricks helps you to harness the power of distributed computing and apply it to create robust data pipelines, along with training and deploying machine learning and deep learning models. Databricks' advanced features enable developers to process, transform, and explore data. Distributed Data Systems with Azure Databricks will help you to put your knowledge of Databricks to work to create big data pipelines. The book provides a hands-on approach to implementing Azure Databricks and its associated methodologies that will make you productive in no time. Complete with detailed explanations of essential concepts, practical examples, and self-assessment questions, you’ll begin with a quick introduction to Databricks core functionalities, before performing distributed model training and inference using TensorFlow and Spark MLlib. As you advance, you’ll explore MLflow Model Serving on Azure Databricks and implement distributed training pipelines using HorovodRunner in Databricks. Finally, you’ll discover how to transform, use, and obtain insights from massive amounts of data to train predictive models and create entire fully working data pipelines. By the end of this MS Azure book, you’ll have gained a solid understanding of how to work with Databricks to create and manage an entire big data pipeline. What you will learnCreate ETLs for big data in Azure DatabricksTrain, manage, and deploy machine learning and deep learning modelsIntegrate Databricks with Azure Data Factory for extract, transform, load (ETL) pipeline creationDiscover how to use Horovod for distributed deep learningFind out how to use Delta Engine to query and process data from Delta LakeUnderstand how to use Data Factory in combination with DatabricksUse Structured Streaming in a production-like environmentWho this book is for This book is for software engineers, machine learning engineers, data scientists, and data engineers who are new to Azure Databricks and want to build high-quality data pipelines without worrying about infrastructure. Knowledge of Azure Databricks basics is required to learn the concepts covered in this book more effectively. A basic understanding of machine learning concepts and beginner-level Python programming knowledge is also recommended.



Azure Databricks Cookbook


Azure Databricks Cookbook
DOWNLOAD
Author : Phani Raj
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-09-17

Azure Databricks Cookbook written by Phani Raj and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-17 with Computers categories.


Get to grips with building and productionizing end-to-end big data solutions in Azure and learn best practices for working with large datasets Key FeaturesIntegrate with Azure Synapse Analytics, Cosmos DB, and Azure HDInsight Kafka Cluster to scale and analyze your projects and build pipelinesUse Databricks SQL to run ad hoc queries on your data lake and create dashboardsProductionize a solution using CI/CD for deploying notebooks and Azure Databricks Service to various environmentsBook Description Azure Databricks is a unified collaborative platform for performing scalable analytics in an interactive environment. The Azure Databricks Cookbook provides recipes to get hands-on with the analytics process, including ingesting data from various batch and streaming sources and building a modern data warehouse. The book starts by teaching you how to create an Azure Databricks instance within the Azure portal, Azure CLI, and ARM templates. You'll work through clusters in Databricks and explore recipes for ingesting data from sources, including files, databases, and streaming sources such as Apache Kafka and EventHub. The book will help you explore all the features supported by Azure Databricks for building powerful end-to-end data pipelines. You'll also find out how to build a modern data warehouse by using Delta tables and Azure Synapse Analytics. Later, you'll learn how to write ad hoc queries and extract meaningful insights from the data lake by creating visualizations and dashboards with Databricks SQL. Finally, you'll deploy and productionize a data pipeline as well as deploy notebooks and Azure Databricks service using continuous integration and continuous delivery (CI/CD). By the end of this Azure book, you'll be able to use Azure Databricks to streamline different processes involved in building data-driven apps. What you will learnRead and write data from and to various Azure resources and file formatsBuild a modern data warehouse with Delta Tables and Azure Synapse AnalyticsExplore jobs, stages, and tasks and see how Spark lazy evaluation worksHandle concurrent transactions and learn performance optimization in Delta tablesLearn Databricks SQL and create real-time dashboards in Databricks SQLIntegrate Azure DevOps for version control, deploying, and productionizing solutions with CI/CD pipelinesDiscover how to use RBAC and ACLs to restrict data accessBuild end-to-end data processing pipeline for near real-time data analyticsWho this book is for This recipe-based book is for data scientists, data engineers, big data professionals, and machine learning engineers who want to perform data analytics on their applications. Prior experience of working with Apache Spark and Azure is necessary to get the most out of this book.



Optimizing Databricks Workloads


Optimizing Databricks Workloads
DOWNLOAD
Author : Anirudh Kala
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-12-24

Optimizing Databricks Workloads written by Anirudh Kala and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-24 with Computers categories.


Accelerate computations and make the most of your data effectively and efficiently on Databricks Key FeaturesUnderstand Spark optimizations for big data workloads and maximizing performanceBuild efficient big data engineering pipelines with Databricks and Delta LakeEfficiently manage Spark clusters for big data processingBook Description Databricks is an industry-leading, cloud-based platform for data analytics, data science, and data engineering supporting thousands of organizations across the world in their data journey. It is a fast, easy, and collaborative Apache Spark-based big data analytics platform for data science and data engineering in the cloud. In Optimizing Databricks Workloads, you will get started with a brief introduction to Azure Databricks and quickly begin to understand the important optimization techniques. The book covers how to select the optimal Spark cluster configuration for running big data processing and workloads in Databricks, some very useful optimization techniques for Spark DataFrames, best practices for optimizing Delta Lake, and techniques to optimize Spark jobs through Spark core. It contains an opportunity to learn about some of the real-world scenarios where optimizing workloads in Databricks has helped organizations increase performance and save costs across various domains. By the end of this book, you will be prepared with the necessary toolkit to speed up your Spark jobs and process your data more efficiently. What you will learnGet to grips with Spark fundamentals and the Databricks platformProcess big data using the Spark DataFrame API with Delta LakeAnalyze data using graph processing in DatabricksUse MLflow to manage machine learning life cycles in DatabricksFind out how to choose the right cluster configuration for your workloadsExplore file compaction and clustering methods to tune Delta tablesDiscover advanced optimization techniques to speed up Spark jobsWho this book is for This book is for data engineers, data scientists, and cloud architects who have working knowledge of Spark/Databricks and some basic understanding of data engineering principles. Readers will need to have a working knowledge of Python, and some experience of SQL in PySpark and Spark SQL is beneficial.



Learning Spark


Learning Spark
DOWNLOAD
Author : Jules S. Damji
language : en
Publisher: O'Reilly Media
Release Date : 2020-07-16

Learning Spark written by Jules S. Damji and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-16 with Computers categories.


Data is bigger, arrives faster, and comes in a variety of formatsâ??and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, youâ??ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow