Dataset Shift In Machine Learning

DOWNLOAD
Download Dataset Shift In Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dataset Shift In Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Dataset Shift In Machine Learning
DOWNLOAD
Author : Joaquin Quinonero-Candela
language : en
Publisher: MIT Press
Release Date : 2022-06-07
Dataset Shift In Machine Learning written by Joaquin Quinonero-Candela and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-07 with Computers categories.
An overview of recent efforts in the machine learning community to deal with dataset and covariate shift, which occurs when test and training inputs and outputs have different distributions. Dataset shift is a common problem in predictive modeling that occurs when the joint distribution of inputs and outputs differs between training and test stages. Covariate shift, a particular case of dataset shift, occurs when only the input distribution changes. Dataset shift is present in most practical applications, for reasons ranging from the bias introduced by experimental design to the irreproducibility of the testing conditions at training time. (An example is -email spam filtering, which may fail to recognize spam that differs in form from the spam the automatic filter has been built on.) Despite this, and despite the attention given to the apparently similar problems of semi-supervised learning and active learning, dataset shift has received relatively little attention in the machine learning community until recently. This volume offers an overview of current efforts to deal with dataset and covariate shift. The chapters offer a mathematical and philosophical introduction to the problem, place dataset shift in relationship to transfer learning, transduction, local learning, active learning, and semi-supervised learning, provide theoretical views of dataset and covariate shift (including decision theoretic and Bayesian perspectives), and present algorithms for covariate shift. Contributors: Shai Ben-David, Steffen Bickel, Karsten Borgwardt, Michael Brückner, David Corfield, Amir Globerson, Arthur Gretton, Lars Kai Hansen, Matthias Hein, Jiayuan Huang, Choon Hui Teo, Takafumi Kanamori, Klaus-Robert Müller, Sam Roweis, Neil Rubens, Tobias Scheffer, Marcel Schmittfull, Bernhard Schölkopf Hidetoshi Shimodaira, Alex Smola, Amos Storkey, Masashi Sugiyama
Machine Learning And Knowledge Discovery In Databases Research Track
DOWNLOAD
Author : Nuria Oliver
language : en
Publisher: Springer Nature
Release Date : 2021-09-10
Machine Learning And Knowledge Discovery In Databases Research Track written by Nuria Oliver and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-10 with Computers categories.
The multi-volume set LNAI 12975 until 12979 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2021, which was held during September 13-17, 2021. The conference was originally planned to take place in Bilbao, Spain, but changed to an online event due to the COVID-19 pandemic. The 210 full papers presented in these proceedings were carefully reviewed and selected from a total of 869 submissions. The volumes are organized in topical sections as follows: Research Track: Part I: Online learning; reinforcement learning; time series, streams, and sequence models; transfer and multi-task learning; semi-supervised and few-shot learning; learning algorithms and applications. Part II: Generative models; algorithms and learning theory; graphs and networks; interpretation, explainability, transparency, safety. Part III: Generative models; search and optimization; supervised learning; text mining and natural language processing; image processing, computer vision and visual analytics. Applied Data Science Track: Part IV: Anomaly detection and malware; spatio-temporal data; e-commerce and finance; healthcare and medical applications (including Covid); mobility and transportation. Part V: Automating machine learning, optimization, and feature engineering; machine learning based simulations and knowledge discovery; recommender systems and behavior modeling; natural language processing; remote sensing, image and video processing; social media.
Machine Learning And Knowledge Discovery In Databases
DOWNLOAD
Author : Annalisa Appice
language : en
Publisher: Springer
Release Date : 2015-08-28
Machine Learning And Knowledge Discovery In Databases written by Annalisa Appice and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-08-28 with Computers categories.
The three volume set LNAI 9284, 9285, and 9286 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, held in Porto, Portugal, in September 2015. The 131 papers presented in these proceedings were carefully reviewed and selected from a total of 483 submissions. These include 89 research papers, 11 industrial papers, 14 nectar papers, and 17 demo papers. They were organized in topical sections named: classification, regression and supervised learning; clustering and unsupervised learning; data preprocessing; data streams and online learning; deep learning; distance and metric learning; large scale learning and big data; matrix and tensor analysis; pattern and sequence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.
Machine Learning In Microservices
DOWNLOAD
Author : Mohamed Abouahmed
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-03-10
Machine Learning In Microservices written by Mohamed Abouahmed and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-10 with Computers categories.
Implement real-world machine learning in a microservices architecture as well as design, build, and deploy intelligent microservices systems using examples and case studies Purchase of the print or Kindle book includes a free PDF eBook Key FeaturesDesign, build, and run microservices systems that utilize the full potential of machine learningDiscover the latest models and techniques for combining microservices and machine learning to create scalable systemsImplement machine learning in microservices architecture using open source applications with pros and consBook Description With the rising need for agile development and very short time-to-market system deployments, incorporating machine learning algorithms into decoupled fine-grained microservices systems provides the perfect technology mix for modern systems. Machine Learning in Microservices is your essential guide to staying ahead of the curve in this ever-evolving world of technology. The book starts by introducing you to the concept of machine learning microservices architecture (MSA) and comparing MSA with service-based and event-driven architectures, along with how to transition into MSA. Next, you'll learn about the different approaches to building MSA and find out how to overcome common practical challenges faced in MSA design. As you advance, you'll get to grips with machine learning (ML) concepts and see how they can help better design and run MSA systems. Finally, the book will take you through practical examples and open source applications that will help you build and run highly efficient, agile microservices systems. By the end of this microservices book, you'll have a clear idea of different models of microservices architecture and machine learning and be able to combine both technologies to deliver a flexible and highly scalable enterprise system. What you will learnRecognize the importance of MSA and ML and deploy both technologies in enterprise systemsExplore MSA enterprise systems and their general practical challengesDiscover how to design and develop microservices architectureUnderstand the different AI algorithms, types, and models and how they can be applied to MSAIdentify and overcome common MSA deployment challenges using AI and ML algorithmsExplore general open source and commercial tools commonly used in MSA enterprise systemsWho this book is for This book is for machine learning solution architects, system and machine learning developers, and system and solution integrators of private and public sector organizations. Basic knowledge of DevOps, system architecture, and artificial intelligence (AI) systems is assumed, and working knowledge of the Python programming language is highly desired.
Addressing Two Issues In Machine Learning
DOWNLOAD
Author : Fulton Wang
language : en
Publisher:
Release Date : 2018
Addressing Two Issues In Machine Learning written by Fulton Wang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.
In this thesis, I create solutions to two problems. In the first, I address the problem that many machine learning models are not interpretable, by creating a new form of classifier, called the Falling Rule List. This is a decision list classifier where the predicted probabilities are decreasing down the list. Experiments show that the gain in interpretability need not be accompanied by a large sacrifice in accuracy on real world datasets. I then briefly discuss possible extensions that allow one to directly optimize rank statistics over rule lists, and handle ordinal data. In the second, I address a shortcoming of a popular approach to handling covariate shift, in which the training distribution and that for which predictions need to be made have different covariate distributions. In particular, the existing importance weighting approach to handling covariate shift suffers from high variance if the two covariate distributions are very different. I develop a dimension reduction procedure that reduces this variance, at the expense of increased bias. Experiments show that this tradeoff can be worthwhile in some situations.
Machine Learning For Brain Disorders
DOWNLOAD
Author : Olivier Colliot
language : en
Publisher: Springer Nature
Release Date : 2023-07-24
Machine Learning For Brain Disorders written by Olivier Colliot and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-24 with Medical categories.
This Open Access volume provides readers with an up-to-date and comprehensive guide to both methodological and applicative aspects of machine learning (ML) for brain disorders. The chapters in this book are organized into five parts. Part One presents the fundamentals of ML. Part Two looks at the main types of data used to characterize brain disorders, including clinical assessments, neuroimaging, electro- and magnetoencephalography, genetics and omics data, electronic health records, mobile devices, connected objects and sensors. Part Three covers the core methodologies of ML in brain disorders and the latest techniques used to study them. Part Four is dedicated to validation and datasets, and Part Five discusses applications of ML to various neurological and psychiatric disorders. In the Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Comprehensive and cutting, Machine Learning for Brain Disorders is a valuable resource for researchers and graduate students who are new to this field, as well as experienced researchers who would like to further expand their knowledge in this area. This book will be useful to students and researchers from various backgrounds such as engineers, computer scientists, neurologists, psychiatrists, radiologists, and neuroscientists.
Machine Learning And Knowledge Discovery In Databases
DOWNLOAD
Author : Frank Hutter
language : en
Publisher: Springer Nature
Release Date : 2021-02-24
Machine Learning And Knowledge Discovery In Databases written by Frank Hutter and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-24 with Computers categories.
The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic. The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio-) temporal data and recurrent neural networks; collaborative filtering and matrix completion. Part II: deep learning optimization and theory;active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning. Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics. Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data. Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.
Enhancing Deep Learning With Bayesian Inference
DOWNLOAD
Author : Matt Benatan
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-06-30
Enhancing Deep Learning With Bayesian Inference written by Matt Benatan and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Computers categories.
Develop Bayesian Deep Learning models to help make your own applications more robust. Key Features Gain insights into the limitations of typical neural networks Acquire the skill to cultivate neural networks capable of estimating uncertainty Discover how to leverage uncertainty to develop more robust machine learning systems Book Description Deep learning has an increasingly significant impact on our lives, from suggesting content to playing a key role in mission- and safety-critical applications. As the influence of these algorithms grows, so does the concern for the safety and robustness of the systems which rely on them. Simply put, typical deep learning methods do not know when they don't know. The field of Bayesian Deep Learning contains a range of methods for approximate Bayesian inference with deep networks. These methods help to improve the robustness of deep learning systems as they tell us how confident they are in their predictions, allowing us to take more care in how we incorporate model predictions within our applications. Through this book, you will be introduced to the rapidly growing field of uncertainty-aware deep learning, developing an understanding of the importance of uncertainty estimation in robust machine learning systems. You will learn about a variety of popular Bayesian Deep Learning methods, and how to implement these through practical Python examples covering a range of application scenarios. By the end of the book, you will have a good understanding of Bayesian Deep Learning and its advantages, and you will be able to develop Bayesian Deep Learning models for safer, more robust deep learning systems. What you will learn Understand advantages and disadvantages of Bayesian inference and deep learning Understand the fundamentals of Bayesian Neural Networks Understand the differences between key BNN implementations/approximations Understand the advantages of probabilistic DNNs in production contexts How to implement a variety of BDL methods in Python code How to apply BDL methods to real-world problems Understand how to evaluate BDL methods and choose the best method for a given task Learn how to deal with unexpected data in real-world deep learning applications Who this book is for This book will cater to researchers and developers looking for ways to develop more robust deep learning models through probabilistic deep learning. You're expected to have a solid understanding of the fundamentals of machine learning and probability, along with prior experience working with machine learning and deep learning models.
Machine Learning And Knowledge Discovery In Databases Research Track
DOWNLOAD
Author : Danai Koutra
language : en
Publisher: Springer Nature
Release Date : 2023-09-17
Machine Learning And Knowledge Discovery In Databases Research Track written by Danai Koutra and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-17 with Computers categories.
The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023. The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows: Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering. Part II: Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning. Part III: Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning. Part IV: Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning. Part V: Robustness; Time Series; Transfer and Multitask Learning. Part VI: Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval. Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.
Density Ratio Estimation In Machine Learning
DOWNLOAD
Author : Masashi Sugiyama
language : en
Publisher: Cambridge University Press
Release Date : 2012-02-20
Density Ratio Estimation In Machine Learning written by Masashi Sugiyama and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-20 with Computers categories.
This book introduces theories, methods and applications of density ratio estimation, a newly emerging paradigm in the machine learning community.