[PDF] Deep Learning For Beginners - eBooks Review

Deep Learning For Beginners


Deep Learning For Beginners
DOWNLOAD

Download Deep Learning For Beginners PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning For Beginners book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Deep Learning For Beginners


Deep Learning For Beginners
DOWNLOAD
Author : Dr. Pablo Rivas
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-09-18

Deep Learning For Beginners written by Dr. Pablo Rivas and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-18 with Computers categories.


Implement supervised, unsupervised, and generative deep learning (DL) models using Keras and Dopamine with TensorFlow Key FeaturesUnderstand the fundamental machine learning concepts useful in deep learningLearn the underlying mathematical concepts as you implement deep learning models from scratchExplore easy-to-understand examples and use cases that will help you build a solid foundation in DLBook Description With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks. What you will learnImplement recurrent neural networks (RNNs) and long short-term memory (LSTM) for image classification and natural language processing tasksExplore the role of convolutional neural networks (CNNs) in computer vision and signal processingDiscover the ethical implications of deep learning modelingUnderstand the mathematical terminology associated with deep learningCode a generative adversarial network (GAN) and a variational autoencoder (VAE) to generate images from a learned latent spaceImplement visualization techniques to compare AEs and VAEsWho this book is for This book is for aspiring data scientists and deep learning engineers who want to get started with the fundamentals of deep learning and neural networks. Although no prior knowledge of deep learning or machine learning is required, familiarity with linear algebra and Python programming is necessary to get started.



Data Science For Beginners


Data Science For Beginners
DOWNLOAD
Author : Russel R Russo
language : en
Publisher:
Release Date : 2020-10-30

Data Science For Beginners written by Russel R Russo and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-30 with categories.


Are you fascinated by Data Science but it seems too complicated? Do you want to learn everything about Artificial Intelligence but it looks like it is an exclusive club? If this is you, please keep reading: you are in the right place, looking at the right book. SInce you are reading these lines you have probably already noticed this: Artificial Intelligence is all around you. Your smartphone that suggests you the next word you want to type, your Netflix account that recommends you the series you may like or Spotify's personalised playlists. This is how machines are learning from you in everyday life. And these examples are only the surface of this technological revolution. Everyone knows (well, almost everyone) how important Data Science is for the growth and success of the biggest tech companies, and many people know about the Machine Learning impact in science, medicine and statistics. Also, it is quite commonly known that Artificial Intelligence, Machine Learning Deep Learning, and the mastering of their most important language, Python, can offer a lot of possibilities in work and business. And you yourself are probably thinking "I surely can see that opportunity, but how can I seize it?" Well, if you kept reading so far you are on the right track to answer your question. Either if you want to start your own AI entreprise, to empower your business or to work in the greatest and most innovative companies, Artificial Intelligence is the future, and Python and Neural Networks programming is The Skill you want to have. The good news is that there is no exclusive club, you can easily (if you commit, of course) learn how to find your way around Artificial Intelligence, Data Science, Deep Learning and Machine Learning, and to do that Data Science for Beginners is the best way. In Data Science for Beginners you will discover: The most effective starting points when training deep neural nets The smartest way to approach Machine Learning What libraries are and which one is the best for you Tips and tricks for a smooth and painless journey into artificial intelligence Why decision tree is the way The TensorFlow parts that are going to make your coding life easy Why python is the best language for Machine Learning How to bring your ideas into a computer How to talk with deep neural networks How to deal with variables and data The most common myths about Machine Learning debunked Even If you don't know anything about programming, understanding Data Science is the ideal place to start. Still, if you already know something about programming but not about how to apply it to Artificial Intelligence, Data Science is what you want to understand. Buy now Data Science for Beginners to start your path of Artificial Intelligence.



Deep Learning For Dummies


Deep Learning For Dummies
DOWNLOAD
Author : John Paul Mueller
language : en
Publisher: John Wiley & Sons
Release Date : 2019-05-14

Deep Learning For Dummies written by John Paul Mueller and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-14 with Computers categories.


Take a deep dive into deep learning Deep learning provides the means for discerning patterns in the data that drive online business and social media outlets. Deep Learning for Dummies gives you the information you need to take the mystery out of the topic—and all of the underlying technologies associated with it. In no time, you’ll make sense of those increasingly confusing algorithms, and find a simple and safe environment to experiment with deep learning. The book develops a sense of precisely what deep learning can do at a high level and then provides examples of the major deep learning application types. Includes sample code Provides real-world examples within the approachable text Offers hands-on activities to make learning easier Shows you how to use Deep Learning more effectively with the right tools This book is perfect for those who want to better understand the basis of the underlying technologies that we use each and every day.



Deep Learning For Beginners


Deep Learning For Beginners
DOWNLOAD
Author : Steven Cooper
language : en
Publisher: Roland Bind
Release Date : 2018-11-06

Deep Learning For Beginners written by Steven Cooper and has been published by Roland Bind this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-06 with Computers categories.


☆★The Best Deep Learning Book for Beginners★☆ If you are looking for a complete beginners guide to learn deep learning with examples, in just a few hours, then you need to continue reading. This book delves into the basics of deep learning for those who are enthusiasts concerning all things machine learning and artificial intelligence. For those who have seen movies which show computer systems taking over the world like, Terminator, or benevolent systems that watch over the population, i.e. Person of Interest, this should be right up your alley. This book will give you the basics of what deep learning entails. That means frameworks used by coders and significant components and tools used in deep learning, that enable facial recognition, speech recognition, and virtual assistance. Yes, deep learning provides the tools through which systems like Siri became possible. ★★ Grab your copy today and learn ★★ ♦ Deep learning utilizes frameworks which allow people to develop tools which are able to offer better abstraction, along with simplification of hard programming issues. TensorFlow is the most popular tool and is used by corporate giants such as Airbus, Twitter, and even Google. ♦ The book illustrates TensorFlow and Caffe2 as the prime frameworks that are used for development by Google and Facebook. Facebook illustrates Caffe2 as one of the lightweight and modular deep learning frameworks, though TensorFlow is the most popular one, considering it has a lot of popularity, and thus, a big forum, which allows for assistance on main problems. ♦ The book considers several components and tools of deep learning such as the neural networks; CNNs, RNNs, GANs, and auto-encoders. These algorithms create the building blocks which propel deep learning and advance it. ♦ The book also considers several applications, including chatbots and virtual assistants, which have become the main focus for deep learning into the future, as they represent the next frontier in information gathering and connectivity. The Internet of Things is also represented here, as deep learning allows for the integration of various systems via an artificial intelligence system, which is already being used for the home and car functions. ♦ And much more... The use of data science adds a lot of value to businesses, and we will continue to see the need for data scientists grow. This book is probably one of the best books for beginners. It's a step-by-step guide for any person who wants to start learning deep learning and artificial intelligence from scratch. When data science can reduce spending costs by billions of dollars in the healthcare industry, why wait to jump in? If you want to get started on deep learning and the concepts that run artificial technologies, don't wait any longer. Scroll up and click the buy now button to get this book today!



Python Machine Learning For Beginners


Python Machine Learning For Beginners
DOWNLOAD
Author : Finn Sanders
language : en
Publisher: Roland Bind
Release Date : 2019-05-22

Python Machine Learning For Beginners written by Finn Sanders and has been published by Roland Bind this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-22 with Computers categories.


Imagine a world where you can make a computer program learn for itself? What if it could recognize who is in a picture or the exact websites that you want to look for when you type it into the program? What if you were able to create any kind of program that you wanted, even as a beginner programmer, without all of the convoluted codes and other information that makes your head spin? This is actually all possible. The programs that were mentioned before are all a part of machine learning. This is a breakthrough in the world of information technology, which allows the computer to learn how to behave, rather than asking the programmer to think of every single instance that may show up with their user ahead of time. it is taking over the world, and you may be using it now, without even realizing it. If you have used a search engine, worked with photo recognition, or done speech recognition devices on your phone, then you have worked with machine learning. And if you combine it with the Python programming language, it is faster, more powerful, and easier (even for beginners) to create your own programs today. Python is considered the ultimate coding language for beginners, but once you start to use it, you will never be able to tell. Many of the best programs out there use this language behind them, and if you are a beginner who is ready to learn, this is a great place to start. If you have a program in mind, or you just want to be able to get some programming knowledge and learn more about the power that comes behind it, then this is the guidebook for you. ★★Some of the topics that we will discuss include★★ ♦ The Fundamentals of Machine Learning, Deep learning, And Neural Networks ♦ How To Set Up Your Environment And Make Sure That Python, TensorFlow And Scikit-Learn Work Well For You ♦ How To Master Neural Network Implementation Using Different Libraries ♦ How Random Forest Algorithms Are Able To Help Out With Machine Learning ♦ How To Uncover Hidden Patterns And Structures With Clustering ♦ How Recurrent Neural Networks Work And When To Use ♦ The Importance Of Linear Classifiers And Why They Need To Be Used In Machine Learning ♦ And Much More! This guidebook is going to provide you with the information you need to get started with Python Machine Learning. If you have an idea for a great program, but you don't have the technical knowledge to make it happen, then this guidebook will help you get started. Machine learning has the capabilities, and Python has the ease, to help you, even as a beginner, create any product that you would like. If you want to learn more about how to make the best programs with Python Machine learning, buy the book today!



Deep Learning Crash Course For Beginners With Python


Deep Learning Crash Course For Beginners With Python
DOWNLOAD
Author : Ai Publishing
language : en
Publisher:
Release Date : 2020-05-25

Deep Learning Crash Course For Beginners With Python written by Ai Publishing and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-25 with categories.


Artificial intelligence is the rage today! While you may find it difficult to understand the most recent advancements in AI, it simply boils down to two most celebrated developments: Machine Learning and Deep Learning. In 2020, Deep Learning is leagues ahead because of its supremacy when it comes to accuracy, especially when trained with enormous amounts of data. Deep Learning, essentially, is a subset of Machine Learning, but it's capable of achieving tremendous power and flexibility. And the era of big data technology presents vast opportunities for incredible innovations in deep learning. How Is This Book Different? This book gives equal importance to the theoretical as well as practical aspects of deep learning. You will understand how high-performing deep learning algorithms work. In every chapter, the theoretical explanation of the different types of deep learning techniques is followed by practical examples. You will learn how to implement different deep learning techniques using the TensorFlow Keras library for Python. Each chapter contains exercises that you can use to assess your understanding of the concepts explained in that chapter. Also, in the Resources, the Python notebook for each chapter is provided. The key advantage of buying this book is you get instant access to all the extra content presented with this book--Python codes, references, exercises, and PDFs--on the publisher's website. You don't need to spend an extra cent. The datasets used in this book are either downloaded at runtime or are available in the Resources/Datasets folder. Another advantage is a detailed explanation of the installation steps for the software that you will need to implement the various deep learning algorithms in this book is provided. That is, you get to experiment with the practical aspects of Deep Learning right from page 1. Even if you are new to Python, you will find the crash course on Python programming language in the first chapter immensely useful. Since all the codes and datasets are included with this book, you only need access to a computer with the internet to get started. The topics covered include: Python Crash Course Deep Learning Prerequisites: Linear and Logistic Regression Neural Networks from Scratch in Python Introduction to TensorFlow and Keras Convolutional Neural Networks Sequence Classification with Recurrent Neural Networks Deep Learning for Natural Language Processing Unsupervised Learning with Autoencoders Answers to All Exercises Click the BUY button and download the book now to start your Deep Learning journey.



Neural Network And Deep Learning For Beginners Concept And Implementation Using Tensorflow And Keras


Neural Network And Deep Learning For Beginners Concept And Implementation Using Tensorflow And Keras
DOWNLOAD
Author : Putra Sumari
language : en
Publisher: Penerbit USM
Release Date :

Neural Network And Deep Learning For Beginners Concept And Implementation Using Tensorflow And Keras written by Putra Sumari and has been published by Penerbit USM this book supported file pdf, txt, epub, kindle and other format this book has been release on with Education categories.


This book provides a structured guide for beginners to learn about neural networks and yet use them to develop intelligence systems. This book is delivered to readers in three parts. The introduction chapter engages readers in various applications that use neural networks as their backbone. Readers are exposed to the significant use of neural networks in these applications, which represents the intelligence of the human brain. The first part provides readers with important background topics: basic programming and the supervised learning paradigm. This is crucial, as it is the foundation of artificial intelligence application development using neural networks. It gives detailed processes for deep learning system development. The second part explains the mechanism of a neural network in extensive detail. Readers will learn about important components in a neural network, namely the input layer, hidden layer, and output layer. Within that layer, readers are exposed to concepts known as loss function and propagation in detail, which represent a machine learning ability. At the end of this part, readers will also learn the tuning process of a neural network model for best performance. The third part gives examples of case studies. It guides readers on how to develop a real-world intelligence system from scratch. The case studies expose the readers to the processes of assessing and solving the problem, dataset compatibility, model development, training and testing, and finally measuring the accuracy of the system. As readers progress through the whole course, hands-on materials will be provided as part of the practise. The hands-on uses the Python programming language with TensorFlow and Keras libraries.



Introduction To Deep Learning A Beginner S Edition


Introduction To Deep Learning A Beginner S Edition
DOWNLOAD
Author : Harshitha Raghavan Devarajan
language : en
Publisher: INENCE PUBLICATIONS PVT LTD
Release Date : 2024-08-10

Introduction To Deep Learning A Beginner S Edition written by Harshitha Raghavan Devarajan and has been published by INENCE PUBLICATIONS PVT LTD this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-10 with Antiques & Collectibles categories.


"Introduction to Deep Learning: A Beginner’s Edition" is a comprehensive guide designed specifically for newcomers to the field of deep learning. This book provides an accessible introduction to the fundamental concepts, making it an ideal starting point for those who are curious about artificial intelligence and its rapidly expanding applications. The book begins with a clear explanation of what deep learning is and how it differs from traditional machine learning, covering the basics of neural networks and how they are used to recognize patterns and make decisions. One of the key strengths of this book is its practical, hands-on approach. Readers are guided through the process of building, training, and deploying neural networks using popular frameworks like TensorFlow and PyTorch. The step-by-step instructions, along with code snippets, allow even those with little to no programming experience to engage actively with the material. Visual aids, such as diagrams and flowcharts, are used throughout the book to simplify complex topics, making it easier for readers to grasp the inner workings of neural networks. The book also explores real-world applications of deep learning, highlighting its impact across various industries, including healthcare, autonomous vehicles, and natural language processing. By providing context and practical examples, the book demonstrates how deep learning is being used to solve complex problems and transform industries. In addition to the core content, the book includes a glossary of key terms, quizzes, and exercises to reinforce learning. "Introduction to Deep Learning: A Beginner’s Edition" is more than just a textbook; it is a complete learning experience designed to equip beginners with the knowledge and skills needed to embark on a successful journey into the world of deep learning.



Machine Learning For Beginners


Machine Learning For Beginners
DOWNLOAD
Author : Ryan Knight
language : en
Publisher: Ryan Knight
Release Date : 2024-05-08

Machine Learning For Beginners written by Ryan Knight and has been published by Ryan Knight this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-08 with Computers categories.


Enter a world of algorithms, data, and artificial intelligence, this all-inclusive guide strips away the complexity of machine learning and AI, transforming them from daunting subjects into accessible and comprehendible concepts. Whether you're a total novice or a professional looking to broaden your knowledge, this guide provides a structured approach that walks you through the basics, right through to the cutting-edge applications of AI and machine learning. Crafted with the reader in mind, every chapter provides detailed explanations, relatable examples, and step-by-step instructions to ensure a comprehensive yet enjoyable learning experience. Inside this book, you'll discover: An introduction to the exciting world of machine learning and AI, making it accessible to everyone regardless of technical background. Comprehensive discussions on the foundational concepts of machine learning, including algorithms, data science principles, and the different types of machine learning. Deep dives into the transformative applications of AI and machine learning in industries such as healthcare, retail, finance, transportation, education, and entertainment. Practical guides on mastering the essential tools and techniques for building intelligent solutions, complete with hands-on exercises and examples. An exploration of the ethical considerations around AI and machine learning, and the responsibilities we have as practitioners. Future trends in machine learning and AI, providing a glimpse into what lies on the horizon. Ignite your journey into the fascinating world of machine learning and AI today. Unleash the power of data and algorithms, create intelligent solutions, and shape a better future. Are you ready to master the future? The opportunity is just a click away. Pick up your copy now, and let's get started!



Deep Learning With R For Beginners


Deep Learning With R For Beginners
DOWNLOAD
Author : Mark Hodnett
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-20

Deep Learning With R For Beginners written by Mark Hodnett and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-20 with Computers categories.


Explore the world of neural networks by building powerful deep learning models using the R ecosystem Key FeaturesGet to grips with the fundamentals of deep learning and neural networksUse R 3.5 and its libraries and APIs to build deep learning models for computer vision and text processingImplement effective deep learning systems in R with the help of end-to-end projectsBook Description Deep learning finds practical applications in several domains, while R is the preferred language for designing and deploying deep learning models. This Learning Path introduces you to the basics of deep learning and even teaches you to build a neural network model from scratch. As you make your way through the chapters, you’ll explore deep learning libraries and understand how to create deep learning models for a variety of challenges, right from anomaly detection to recommendation systems. The book will then help you cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud, in addition to model optimization, overfitting, and data augmentation. Through real-world projects, you’ll also get up to speed with training convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) in R. By the end of this Learning Path, you’ll be well versed with deep learning and have the skills you need to implement a number of deep learning concepts in your research work or projects. This Learning Path includes content from the following Packt products: R Deep Learning Essentials - Second Edition by Joshua F. Wiley and Mark HodnettR Deep Learning Projects by Yuxi (Hayden) Liu and Pablo MaldonadoWhat you will learnImplement credit card fraud detection with autoencodersTrain neural networks to perform handwritten digit recognition using MXNetReconstruct images using variational autoencodersExplore the applications of autoencoder neural networks in clustering and dimensionality reductionCreate natural language processing (NLP) models using Keras and TensorFlow in RPrevent models from overfitting the data to improve generalizabilityBuild shallow neural network prediction modelsWho this book is for This Learning Path is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. A fundamental understanding of R programming and familiarity with the basic concepts of deep learning are necessary to get the most out of this Learning Path.