[PDF] Deep Learning For Engineers - eBooks Review

Deep Learning For Engineers


Deep Learning For Engineers
DOWNLOAD

Download Deep Learning For Engineers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning For Engineers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning For Engineers


Machine Learning For Engineers
DOWNLOAD
Author : Ryan G. McClarren
language : en
Publisher: Springer Nature
Release Date : 2021-09-21

Machine Learning For Engineers written by Ryan G. McClarren and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-21 with Technology & Engineering categories.


All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally “analog” disciplines—mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers’ ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow, demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally benefits undergraduate engineering students who wish to acquire the skills required by future employers, and practicing engineers who wish to expand and update their problem-solving toolkit.



Deep Learning For Coders With Fastai And Pytorch


Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29

Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.


Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala



Machine Learning


Machine Learning
DOWNLOAD
Author : Andreas Lindholm
language : en
Publisher:
Release Date : 2022

Machine Learning written by Andreas Lindholm and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with Machine learning categories.


"This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning"--



Machine Learning Engineering In Action


Machine Learning Engineering In Action
DOWNLOAD
Author : Ben Wilson
language : en
Publisher: Simon and Schuster
Release Date : 2022-05-17

Machine Learning Engineering In Action written by Ben Wilson and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-17 with Computers categories.


Field-tested tips, tricks, and design patterns for building machine learning projects that are deployable, maintainable, and secure from concept to production. In Machine Learning Engineering in Action, you will learn: Evaluating data science problems to find the most effective solution Scoping a machine learning project for usage expectations and budget Process techniques that minimize wasted effort and speed up production Assessing a project using standardized prototyping work and statistical validation Choosing the right technologies and tools for your project Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices Ferrying a machine learning project from your data science team to your end users is no easy task. Machine Learning Engineering in Action will help you make it simple. Inside, you'll find fantastic advice from veteran industry expert Ben Wilson, Principal Resident Solutions Architect at Databricks. Ben introduces his personal toolbox of techniques for building deployable and maintainable production machine learning systems. You'll learn the importance of Agile methodologies for fast prototyping and conferring with stakeholders, while developing a new appreciation for the importance of planning. Adopting well-established software development standards will help you deliver better code management, and make it easier to test, scale, and even reuse your machine learning code. Every method is explained in a friendly, peer-to-peer style and illustrated with production-ready source code. About the technology Deliver maximum performance from your models and data. This collection of reproducible techniques will help you build stable data pipelines, efficient application workflows, and maintainable models every time. Based on decades of good software engineering practice, machine learning engineering ensures your ML systems are resilient, adaptable, and perform in production. About the book Machine Learning Engineering in Action teaches you core principles and practices for designing, building, and delivering successful machine learning projects. You'll discover software engineering techniques like conducting experiments on your prototypes and implementing modular design that result in resilient architectures and consistent cross-team communication. Based on the author's extensive experience, every method in this book has been used to solve real-world projects. What's inside Scoping a machine learning project for usage expectations and budget Choosing the right technologies for your design Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices About the reader For data scientists who know machine learning and the basics of object-oriented programming. About the author Ben Wilson is Principal Resident Solutions Architect at Databricks, where he developed the Databricks Labs AutoML project, and is an MLflow committer.



Automated Software Engineering A Deep Learning Based Approach


Automated Software Engineering A Deep Learning Based Approach
DOWNLOAD
Author : Suresh Chandra Satapathy
language : en
Publisher: Springer Nature
Release Date : 2020-01-07

Automated Software Engineering A Deep Learning Based Approach written by Suresh Chandra Satapathy and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-07 with Technology & Engineering categories.


This book discusses various open issues in software engineering, such as the efficiency of automated testing techniques, predictions for cost estimation, data processing, and automatic code generation. Many traditional techniques are available for addressing these problems. But, with the rapid changes in software development, they often prove to be outdated or incapable of handling the software’s complexity. Hence, many previously used methods are proving insufficient to solve the problems now arising in software development. The book highlights a number of unique problems and effective solutions that reflect the state-of-the-art in software engineering. Deep learning is the latest computing technique, and is now gaining popularity in various fields of software engineering. This book explores new trends and experiments that have yielded promising solutions to current challenges in software engineering. As such, it offers a valuable reference guide for a broad audience including systems analysts, software engineers, researchers, graduate students and professors engaged in teaching software engineering.



Machine Learning Engineering


Machine Learning Engineering
DOWNLOAD
Author : Andriy Burkov
language : en
Publisher: True Positive Incorporated
Release Date : 2020-09-08

Machine Learning Engineering written by Andriy Burkov and has been published by True Positive Incorporated this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-08 with categories.


The most comprehensive book on the engineering aspects of building reliable AI systems. "If you intend to use machine learning to solve business problems at scale, I'm delighted you got your hands on this book." -Cassie Kozyrkov, Chief Decision Scientist at Google "Foundational work about the reality of building machine learning models in production." -Karolis Urbonas, Head of Machine Learning and Science at Amazon



Deep Learning For Engineers


Deep Learning For Engineers
DOWNLOAD
Author : Tariq M. Arif
language : en
Publisher: CRC Press
Release Date : 2024-02-28

Deep Learning For Engineers written by Tariq M. Arif and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-02-28 with Computers categories.


Deep Learning for Engineers introduces the fundamental principles of deep learning along with an explanation of the basic elements required for understanding and applying deep learning models. As a comprehensive guideline for applying deep learning models in practical settings, this book features an easy-to-understand coding structure using Python and PyTorch with an in-depth explanation of four typical deep learning case studies on image classification, object detection, semantic segmentation, and image captioning. The fundamentals of convolutional neural network (CNN) and recurrent neural network (RNN) architectures and their practical implementations in science and engineering are also discussed. This book includes exercise problems for all case studies focusing on various fine-tuning approaches in deep learning. Science and engineering students at both undergraduate and graduate levels, academic researchers, and industry professionals will find the contents useful.



Deep Learning Applications And Intelligent Decision Making In Engineering


Deep Learning Applications And Intelligent Decision Making In Engineering
DOWNLOAD
Author : Karthikrajan Senthilnathan
language : en
Publisher:
Release Date : 2020

Deep Learning Applications And Intelligent Decision Making In Engineering written by Karthikrajan Senthilnathan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computational intelligence categories.


"This book explores the application of deep learning in building a smart world, ranging from smart cities, smart agriculture to smart homes"--



Machine Learning And Deep Learning In Real Time Applications


Machine Learning And Deep Learning In Real Time Applications
DOWNLOAD
Author : Paawan Sharma
language : en
Publisher: Engineering Science Reference
Release Date : 2020

Machine Learning And Deep Learning In Real Time Applications written by Paawan Sharma and has been published by Engineering Science Reference this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.


Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.



Machine Learning And Systems Engineering


Machine Learning And Systems Engineering
DOWNLOAD
Author : Sio-Iong Ao
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-10-05

Machine Learning And Systems Engineering written by Sio-Iong Ao and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-05 with Technology & Engineering categories.


A large international conference on Advances in Machine Learning and Systems Engineering was held in UC Berkeley, California, USA, October 20-22, 2009, under the auspices of the World Congress on Engineering and Computer Science (WCECS 2009). Machine Learning and Systems Engineering contains forty-six revised and extended research articles written by prominent researchers participating in the conference. Topics covered include Expert system, Intelligent decision making, Knowledge-based systems, Knowledge extraction, Data analysis tools, Computational biology, Optimization algorithms, Experiment designs, Complex system identification, Computational modeling, and industrial applications. Machine Learning and Systems Engineering offers the state of the art of tremendous advances in machine learning and systems engineering and also serves as an excellent reference text for researchers and graduate students, working on machine learning and systems engineering.