[PDF] Deep Learning With Keras Beginner S Guide To Deep Learning With Keras - eBooks Review

Deep Learning With Keras Beginner S Guide To Deep Learning With Keras


Deep Learning With Keras Beginner S Guide To Deep Learning With Keras
DOWNLOAD

Download Deep Learning With Keras Beginner S Guide To Deep Learning With Keras PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning With Keras Beginner S Guide To Deep Learning With Keras book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Deep Learning With Keras


Deep Learning With Keras
DOWNLOAD
Author : Frank Millstein
language : en
Publisher: Frank Millstein
Release Date : 2020-07-07

Deep Learning With Keras written by Frank Millstein and has been published by Frank Millstein this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-07 with Computers categories.


Deep Learning with Keras This book will introduce you to various supervised and unsupervised deep learning algorithms like the multilayer perceptron, linear regression and other more advanced deep convolutional and recurrent neural networks. You will also learn about image processing, handwritten recognition, object recognition and much more. Furthermore, you will get familiar with recurrent neural networks like LSTM and GAN as you explore processing sequence data like time series, text, and audio. The book will definitely be your best companion on this great deep learning journey with Keras introducing you to the basics you need to know in order to take next steps and learn more advanced deep neural networks. Here Is a Preview of What You’ll Learn Here… The difference between deep learning and machine learning Deep neural networks Convolutional neural networks Building deep learning models with Keras Multi-layer perceptron network models Activation functions Handwritten recognition using MNIST Solving multi-class classification problems Recurrent neural networks and sequence classification And much more... Get this book NOW and learn more about Deep Learning with Keras!



Deep Learning With Keras


Deep Learning With Keras
DOWNLOAD
Author : Frank Millstein
language : en
Publisher: Frank Millstein
Release Date : 2020-07-07

Deep Learning With Keras written by Frank Millstein and has been published by Frank Millstein this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-07 with Computers categories.


Deep Learning with Keras This book will introduce you to various supervised and unsupervised deep learning algorithms like the multilayer perceptron, linear regression and other more advanced deep convolutional and recurrent neural networks. You will also learn about image processing, handwritten recognition, object recognition and much more. Furthermore, you will get familiar with recurrent neural networks like LSTM and GAN as you explore processing sequence data like time series, text, and audio. The book will definitely be your best companion on this great deep learning journey with Keras introducing you to the basics you need to know in order to take next steps and learn more advanced deep neural networks. Here Is a Preview of What You’ll Learn Here… The difference between deep learning and machine learning Deep neural networks Convolutional neural networks Building deep learning models with Keras Multi-layer perceptron network models Activation functions Handwritten recognition using MNIST Solving multi-class classification problems Recurrent neural networks and sequence classification And much more... Get this book NOW and learn more about Deep Learning with Keras!



Deep Learning With Keras


Deep Learning With Keras
DOWNLOAD
Author : Frank Millstein
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2018-02-22

Deep Learning With Keras written by Frank Millstein and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-22 with categories.


Deep Learning with Keras This book will introduce you to various supervised and unsupervised deep learning algorithms like the multilayer perceptron, linear regression and other more advanced deep convolutional and recurrent neural networks. You will also learn about image processing, handwritten recognition, object recognition and much more. Furthermore, you will get familiar with recurrent neural networks like LSTM and GAN as you explore processing sequence data like time series, text, and audio. The book will definitely be your best companion on this great deep learning journey with Keras introducing you to the basics you need to know in order to take next steps and learn more advanced deep neural networks. Here Is a Preview of What You'll Learn Here... The difference between deep learning and machine learning Deep neural networks Convolutional neural networks Building deep learning models with Keras Multi-layer perceptron network models Activation functions Handwritten recognition using MNIST Solving multi-class classification problems Recurrent neural networks and sequence classification And much more... Get this book NOW and learn more about Deep Learning with Keras!



Hands On Machine Learning With Scikit Learn Keras And Tensorflow


Hands On Machine Learning With Scikit Learn Keras And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: O'Reilly Media
Release Date : 2019-09-05

Hands On Machine Learning With Scikit Learn Keras And Tensorflow written by Aurélien Géron and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-05 with Computers categories.


Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets



Python Machine Learning


Python Machine Learning
DOWNLOAD
Author : Wei-Meng Lee
language : en
Publisher: John Wiley & Sons
Release Date : 2019-04-04

Python Machine Learning written by Wei-Meng Lee and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-04 with Computers categories.


Python makes machine learning easy for beginners and experienced developers With computing power increasing exponentially and costs decreasing at the same time, there is no better time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. However, machine learning is not for the faint of heart—it requires a good foundation in statistics, as well as programming knowledge. Python Machine Learning will help coders of all levels master one of the most in-demand programming skillsets in use today. Readers will get started by following fundamental topics such as an introduction to Machine Learning and Data Science. For each learning algorithm, readers will use a real-life scenario to show how Python is used to solve the problem at hand. • Python data science—manipulating data and data visualization • Data cleansing • Understanding Machine learning algorithms • Supervised learning algorithms • Unsupervised learning algorithms • Deploying machine learning models Python Machine Learning is essential reading for students, developers, or anyone with a keen interest in taking their coding skills to the next level.



The Deep Learning With Keras Workshop


The Deep Learning With Keras Workshop
DOWNLOAD
Author : Matthew Moocarme
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-29

The Deep Learning With Keras Workshop written by Matthew Moocarme and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-29 with Computers categories.


Discover how to leverage Keras, the powerful and easy-to-use open source Python library for developing and evaluating deep learning models Key FeaturesGet to grips with various model evaluation metrics, including sensitivity, specificity, and AUC scoresExplore advanced concepts such as sequential memory and sequential modelingReinforce your skills with real-world development, screencasts, and knowledge checksBook Description New experiences can be intimidating, but not this one! This beginner's guide to deep learning is here to help you explore deep learning from scratch with Keras, and be on your way to training your first ever neural networks. What sets Keras apart from other deep learning frameworks is its simplicity. With over two hundred thousand users, Keras has a stronger adoption in industry and the research community than any other deep learning framework. The Deep Learning with Keras Workshop starts by introducing you to the fundamental concepts of machine learning using the scikit-learn package. After learning how to perform the linear transformations that are necessary for building neural networks, you'll build your first neural network with the Keras library. As you advance, you'll learn how to build multi-layer neural networks and recognize when your model is underfitting or overfitting to the training data. With the help of practical exercises, you'll learn to use cross-validation techniques to evaluate your models and then choose the optimal hyperparameters to fine-tune their performance. Finally, you'll explore recurrent neural networks and learn how to train them to predict values in sequential data. By the end of this book, you'll have developed the skills you need to confidently train your own neural network models. What you will learnGain insights into the fundamentals of neural networksUnderstand the limitations of machine learning and how it differs from deep learningBuild image classifiers with convolutional neural networksEvaluate, tweak, and improve your models with techniques such as cross-validationCreate prediction models to detect data patterns and make predictionsImprove model accuracy with L1, L2, and dropout regularizationWho this book is for If you know the basics of data science and machine learning and want to get started with advanced machine learning technologies like artificial neural networks and deep learning, then this is the book for you. To grasp the concepts explained in this deep learning book more effectively, prior experience in Python programming and some familiarity with statistics and logistic regression are a must.



Deep Learning With Python


Deep Learning With Python
DOWNLOAD
Author : Francois Chollet
language : en
Publisher: Simon and Schuster
Release Date : 2017-11-30

Deep Learning With Python written by Francois Chollet and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-30 with Computers categories.


Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance



Deep Learning With Keras


Deep Learning With Keras
DOWNLOAD
Author : Antonio Gulli
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-04-26

Deep Learning With Keras written by Antonio Gulli and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-26 with Computers categories.


Get to grips with the basics of Keras to implement fast and efficient deep-learning models About This Book Implement various deep-learning algorithms in Keras and see how deep-learning can be used in games See how various deep-learning models and practical use-cases can be implemented using Keras A practical, hands-on guide with real-world examples to give you a strong foundation in Keras Who This Book Is For If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book. What You Will Learn Optimize step-by-step functions on a large neural network using the Backpropagation Algorithm Fine-tune a neural network to improve the quality of results Use deep learning for image and audio processing Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases Identify problems for which Recurrent Neural Network (RNN) solutions are suitable Explore the process required to implement Autoencoders Evolve a deep neural network using reinforcement learning In Detail This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of hand written digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GAN). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at Reinforcement Learning and its application to AI game playing, another popular direction of research and application of neural networks. Style and approach This book is an easy-to-follow guide full of examples and real-world applications to help you gain an in-depth understanding of Keras. This book will showcase more than twenty working Deep Neural Networks coded in Python using Keras.



Deep Learning With Python


Deep Learning With Python
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2016-05-13

Deep Learning With Python written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-13 with Computers categories.


Deep learning is the most interesting and powerful machine learning technique right now. Top deep learning libraries are available on the Python ecosystem like Theano and TensorFlow. Tap into their power in a few lines of code using Keras, the best-of-breed applied deep learning library. In this Ebook, learn exactly how to get started and apply deep learning to your own machine learning projects.



Advanced Deep Learning With Tensorflow 2 And Keras


Advanced Deep Learning With Tensorflow 2 And Keras
DOWNLOAD
Author : Rowel Atienza
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-02-28

Advanced Deep Learning With Tensorflow 2 And Keras written by Rowel Atienza and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-28 with Computers categories.


Updated and revised second edition of the bestselling guide to advanced deep learning with TensorFlow 2 and Keras Key FeaturesExplore the most advanced deep learning techniques that drive modern AI resultsNew coverage of unsupervised deep learning using mutual information, object detection, and semantic segmentationCompletely updated for TensorFlow 2.xBook Description Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects. Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques. Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance. Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI. What you will learnUse mutual information maximization techniques to perform unsupervised learningUse segmentation to identify the pixel-wise class of each object in an imageIdentify both the bounding box and class of objects in an image using object detectionLearn the building blocks for advanced techniques - MLPss, CNN, and RNNsUnderstand deep neural networks - including ResNet and DenseNetUnderstand and build autoregressive models – autoencoders, VAEs, and GANsDiscover and implement deep reinforcement learning methodsWho this book is for This is not an introductory book, so fluency with Python is required. The reader should also be familiar with some machine learning approaches, and practical experience with DL will also be helpful. Knowledge of Keras or TensorFlow 2.0 is not required but is recommended.