[PDF] The Deep Learning With Keras Workshop - eBooks Review

The Deep Learning With Keras Workshop


The Deep Learning With Keras Workshop
DOWNLOAD

Download The Deep Learning With Keras Workshop PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Deep Learning With Keras Workshop book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



The Deep Learning With Keras Workshop


The Deep Learning With Keras Workshop
DOWNLOAD
Author : Matthew Moocarme
language : en
Publisher:
Release Date : 2020-07-29

The Deep Learning With Keras Workshop written by Matthew Moocarme and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-29 with Machine learning categories.


Discover how to leverage Keras, the powerful and easy-to-use open source Python library for developing and evaluating deep learning models Key Features Get to grips with various model evaluation metrics, including sensitivity, specificity, and AUC scores Explore advanced concepts such as sequential memory and sequential modeling Reinforce your skills with real-world development, screencasts, and knowledge checks Book Description New experiences can be intimidating, but not this one! This beginner's guide to deep learning is here to help you explore deep learning from scratch with Keras, and be on your way to training your first ever neural networks. What sets Keras apart from other deep learning frameworks is its simplicity. With over two hundred thousand users, Keras has a stronger adoption in industry and the research community than any other deep learning framework. The Deep Learning with Keras Workshop starts by introducing you to the fundamental concepts of machine learning using the scikit-learn package. After learning how to perform the linear transformations that are necessary for building neural networks, you'll build your first neural network with the Keras library. As you advance, you'll learn how to build multi-layer neural networks and recognize when your model is underfitting or overfitting to the training data. With the help of practical exercises, you'll learn to use cross-validation techniques to evaluate your models and then choose the optimal hyperparameters to fine-tune their performance. Finally, you'll explore recurrent neural networks and learn how to train them to predict values in sequential data. By the end of this book, you'll have developed the skills you need to confidently train your own neural network models. What you will learn Gain insights into the fundamentals of neural networks Understand the limitations of machine learning and how it differs from deep learning Build image classifiers with convolutional neural networks Evaluate, tweak, and improve your models with techniques such as cross-validation Create prediction models to detect data patterns and make predictions Improve model accuracy with L1, L2, and dropout regularization Who this book is for If you know the basics of data science and machine learning and want to get started with advanced machine learning technologies like artificial neural networks and deep learning, then this is the book for you. To grasp the concepts explained in this deep learnin ...



The Deep Learning With Keras Workshop


The Deep Learning With Keras Workshop
DOWNLOAD
Author : Matthew Moocarme
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-29

The Deep Learning With Keras Workshop written by Matthew Moocarme and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-29 with Computers categories.


Discover how to leverage Keras, the powerful and easy-to-use open source Python library for developing and evaluating deep learning models Key FeaturesGet to grips with various model evaluation metrics, including sensitivity, specificity, and AUC scoresExplore advanced concepts such as sequential memory and sequential modelingReinforce your skills with real-world development, screencasts, and knowledge checksBook Description New experiences can be intimidating, but not this one! This beginner's guide to deep learning is here to help you explore deep learning from scratch with Keras, and be on your way to training your first ever neural networks. What sets Keras apart from other deep learning frameworks is its simplicity. With over two hundred thousand users, Keras has a stronger adoption in industry and the research community than any other deep learning framework. The Deep Learning with Keras Workshop starts by introducing you to the fundamental concepts of machine learning using the scikit-learn package. After learning how to perform the linear transformations that are necessary for building neural networks, you'll build your first neural network with the Keras library. As you advance, you'll learn how to build multi-layer neural networks and recognize when your model is underfitting or overfitting to the training data. With the help of practical exercises, you'll learn to use cross-validation techniques to evaluate your models and then choose the optimal hyperparameters to fine-tune their performance. Finally, you'll explore recurrent neural networks and learn how to train them to predict values in sequential data. By the end of this book, you'll have developed the skills you need to confidently train your own neural network models. What you will learnGain insights into the fundamentals of neural networksUnderstand the limitations of machine learning and how it differs from deep learningBuild image classifiers with convolutional neural networksEvaluate, tweak, and improve your models with techniques such as cross-validationCreate prediction models to detect data patterns and make predictionsImprove model accuracy with L1, L2, and dropout regularizationWho this book is for If you know the basics of data science and machine learning and want to get started with advanced machine learning technologies like artificial neural networks and deep learning, then this is the book for you. To grasp the concepts explained in this deep learning book more effectively, prior experience in Python programming and some familiarity with statistics and logistic regression are a must.



The Deep Learning With Keras Workshop Second Edition


The Deep Learning With Keras Workshop Second Edition
DOWNLOAD
Author : Matthew Moocarme
language : en
Publisher:
Release Date : 2020-02-27

The Deep Learning With Keras Workshop Second Edition written by Matthew Moocarme and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-27 with Computers categories.




The Deep Learning With Keras Workshop Second Edition


The Deep Learning With Keras Workshop Second Edition
DOWNLOAD
Author : Matthew Moocarme
language : en
Publisher:
Release Date : 2020

The Deep Learning With Keras Workshop Second Edition written by Matthew Moocarme and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.


Cut through the noise and get real results with a step-by-step approach to understanding deep learning with Keras programming Key Features Ideal for those getting started with Keras for the first time A step-by-step Keras tutorial with exercises and activities that help build key skills Structured to let you progress at your own pace, on your own terms Use your physical print copy to redeem free access to the online interactive edition Book Description You already know that you want to learn Keras, and a smarter way to learn is to learn by doing. The Deep Learning with Keras Workshop focuses on building up your practical skills so that you can develop artificial intelligence applications or build machine learning models with Keras. You'll learn from real examples that lead to real results. Throughout The Deep Learning with Keras Workshop, you'll take an engaging step-by-step approach to understand Keras. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend tinkering with your own neural networks. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Deep Learning with Keras Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your book. Fast-paced and direct, The Deep Learning with Keras Workshop is the ideal companion for those who are just getting started with Keras. You'll build and iterate on your code like a software developer, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead. What you will learn Gain insight into the fundamental concepts of neural networks Learn to think like a data scientist and understand the difference between machine learning and deep learning Discover various techniques to evaluate, tweak, and improve your models Explore different techniques to manipulate your data Explore alternative techniques to verify the accuracy of y ...



The Deep Learning Workshop


The Deep Learning Workshop
DOWNLOAD
Author : Mirza Rahim Baig
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-31

The Deep Learning Workshop written by Mirza Rahim Baig and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-31 with Computers categories.


Take a hands-on approach to understanding deep learning and build smart applications that can recognize images and interpret text Key Features Understand how to implement deep learning with TensorFlow and Keras Learn the fundamentals of computer vision and image recognition Study the architecture of different neural networks Book Description Are you fascinated by how deep learning powers intelligent applications such as self-driving cars, virtual assistants, facial recognition devices, and chatbots to process data and solve complex problems? Whether you are familiar with machine learning or are new to this domain, The Deep Learning Workshop will make it easy for you to understand deep learning with the help of interesting examples and exercises throughout. The book starts by highlighting the relationship between deep learning, machine learning, and artificial intelligence and helps you get comfortable with the TensorFlow 2.0 programming structure using hands-on exercises. You'll understand neural networks, the structure of a perceptron, and how to use TensorFlow to create and train models. The book will then let you explore the fundamentals of computer vision by performing image recognition exercises with convolutional neural networks (CNNs) using Keras. As you advance, you'll be able to make your model more powerful by implementing text embedding and sequencing the data using popular deep learning solutions. Finally, you'll get to grips with bidirectional recurrent neural networks (RNNs) and build generative adversarial networks (GANs) for image synthesis. By the end of this deep learning book, you'll have learned the skills essential for building deep learning models with TensorFlow and Keras. What you will learn Understand how deep learning, machine learning, and artificial intelligence are different Develop multilayer deep neural networks with TensorFlow Implement deep neural networks for multiclass classification using Keras Train CNN models for image recognition Handle sequence data and use it in conjunction with RNNs Build a GAN to generate high-quality synthesized images Who this book is for If you are interested in machine learning and want to create and train deep learning models using TensorFlow and Keras, this workshop is for you. A solid understanding of Python and its packages, along with basic machine learning concepts, will help you to learn the topics quickly.



The Applied Tensorflow And Keras Workshop


The Applied Tensorflow And Keras Workshop
DOWNLOAD
Author : Harveen Singh Chadha
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-30

The Applied Tensorflow And Keras Workshop written by Harveen Singh Chadha and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-30 with Computers categories.


Cut through the noise and get real results with this workshop for beginners. Use a project-based approach to exploring machine learning with TensorFlow and Keras. Key FeaturesUnderstand the nuances of setting up a deep learning programming environmentGain insights into the common components of a neural network and its essential operationsGet to grips with deploying a machine learning model as an interactive web application with FlaskBook Description Machine learning gives computers the ability to learn like humans. It is becoming increasingly transformational to businesses in many forms, and a key skill to learn to prepare for the future digital economy. As a beginner, you'll unlock a world of opportunities by learning the techniques you need to contribute to the domains of machine learning, deep learning, and modern data analysis using the latest cutting-edge tools. The Applied TensorFlow and Keras Workshop begins by showing you how neural networks work. After you've understood the basics, you will train a few networks by altering their hyperparameters. To build on your skills, you'll learn how to select the most appropriate model to solve the problem in hand. While tackling advanced concepts, you'll discover how to assemble a deep learning system by bringing together all the essential elements necessary for building a basic deep learning system - data, model, and prediction. Finally, you'll explore ways to evaluate the performance of your model, and improve it using techniques such as model evaluation and hyperparameter optimization. By the end of this book, you'll have learned how to build a Bitcoin app that predicts future prices, and be able to build your own models for other projects. What you will learnFamiliarize yourself with the components of a neural networkUnderstand the different types of problems that can be solved using neural networksExplore different ways to select the right architecture for your modelMake predictions with a trained model using TensorBoardDiscover the components of Keras and ways to leverage its features in your modelExplore how you can deal with new data by learning ways to retrain your modelWho this book is for If you are a data scientist or a machine learning and deep learning enthusiast, who is looking to design, train, and deploy TensorFlow and Keras models into real-world applications, then this workshop is for you. Knowledge of computer science and machine learning concepts and experience in analyzing data will help you to understand the topics explained in this book with ease.



Deep Learning With Keras


Deep Learning With Keras
DOWNLOAD
Author : Antonio Gulli
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-04-26

Deep Learning With Keras written by Antonio Gulli and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-26 with Computers categories.


Get to grips with the basics of Keras to implement fast and efficient deep-learning models About This Book Implement various deep-learning algorithms in Keras and see how deep-learning can be used in games See how various deep-learning models and practical use-cases can be implemented using Keras A practical, hands-on guide with real-world examples to give you a strong foundation in Keras Who This Book Is For If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book. What You Will Learn Optimize step-by-step functions on a large neural network using the Backpropagation Algorithm Fine-tune a neural network to improve the quality of results Use deep learning for image and audio processing Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases Identify problems for which Recurrent Neural Network (RNN) solutions are suitable Explore the process required to implement Autoencoders Evolve a deep neural network using reinforcement learning In Detail This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of hand written digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GAN). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at Reinforcement Learning and its application to AI game playing, another popular direction of research and application of neural networks. Style and approach This book is an easy-to-follow guide full of examples and real-world applications to help you gain an in-depth understanding of Keras. This book will showcase more than twenty working Deep Neural Networks coded in Python using Keras.



Deep Learning With Tensorflow 2 And Keras


Deep Learning With Tensorflow 2 And Keras
DOWNLOAD
Author : Antonio Gulli
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-12-27

Deep Learning With Tensorflow 2 And Keras written by Antonio Gulli and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-27 with Computers categories.


Build machine and deep learning systems with the newly released TensorFlow 2 and Keras for the lab, production, and mobile devices Key FeaturesIntroduces and then uses TensorFlow 2 and Keras right from the startTeaches key machine and deep learning techniquesUnderstand the fundamentals of deep learning and machine learning through clear explanations and extensive code samplesBook Description Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before. This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML. What you will learnBuild machine learning and deep learning systems with TensorFlow 2 and the Keras APIUse Regression analysis, the most popular approach to machine learningUnderstand ConvNets (convolutional neural networks) and how they are essential for deep learning systems such as image classifiersUse GANs (generative adversarial networks) to create new data that fits with existing patternsDiscover RNNs (recurrent neural networks) that can process sequences of input intelligently, using one part of a sequence to correctly interpret anotherApply deep learning to natural human language and interpret natural language texts to produce an appropriate responseTrain your models on the cloud and put TF to work in real environmentsExplore how Google tools can automate simple ML workflows without the need for complex modelingWho this book is for This book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow 2, and AutoML to build machine learning systems. Some knowledge of machine learning is expected.



Introduction To Deep Learning


Introduction To Deep Learning
DOWNLOAD
Author : Eugene Charniak
language : en
Publisher: MIT Press
Release Date : 2019-01-29

Introduction To Deep Learning written by Eugene Charniak and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-29 with Computers categories.


A project-based guide to the basics of deep learning. This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. “I find I learn computer science material best by sitting down and writing programs,” the author writes, and the book reflects this approach. Each chapter includes a programming project, exercises, and references for further reading. An early chapter is devoted to Tensorflow and its interface with Python, the widely used programming language. Familiarity with linear algebra, multivariate calculus, and probability and statistics is required, as is a rudimentary knowledge of programming in Python. The book can be used in both undergraduate and graduate courses; practitioners will find it an essential reference.



R Deep Learning Cookbook


R Deep Learning Cookbook
DOWNLOAD
Author : PKS Prakash
language : en
Publisher:
Release Date : 2017

R Deep Learning Cookbook written by PKS Prakash and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Artificial intelligence categories.


Powerful, independent recipes to build deep learning models in different application areas using R librariesAbout This Book* Master intricacies of R deep learning packages such as mxnet & tensorflow* Learn application on deep learning in different domains using practical examples from text, image and speech* Guide to set-up deep learning models using CPU and GPUWho This Book Is ForData science professionals or analysts who have performed machine learning tasks and now want to explore deep learning and want a quick reference that could address the pain points while implementing deep learning. Those who wish to have an edge over other deep learning professionals will find this book quite useful.What You Will Learn* Build deep learning models in different application areas using TensorFlow, H2O, and MXnet.* Analyzing a Deep boltzmann machine* Setting up and Analysing Deep belief networks* Building supervised model using various machine learning algorithms* Set up variants of basic convolution function* Represent data using Autoencoders.* Explore generative models available in Deep Learning.* Discover sequence modeling using Recurrent nets* Learn fundamentals of Reinforcement Leaning* Learn the steps involved in applying Deep Learning in text mining* Explore application of deep learning in signal processing* Utilize Transfer learning for utilizing pre-trained model* Train a deep learning model on a GPUIn DetailDeep Learning is the next big thing. It is a part of machine learning. It's favorable results in applications with huge and complex data is remarkable. Simultaneously, R programming language is very popular amongst the data miners and statisticians.This book will help you to get through the problems that you face during the execution of different tasks and Understand hacks in deep learning, neural networks, and advanced machine learning techniques. It will also take you through complex deep learning algorithms and various deep learning packages and libraries in R. It will be starting with different packages in Deep Learning to neural networks and structures. You will also encounter the applications in text mining and processing along with a comparison between CPU and GPU performance.By the end of the book, you will have a logical understanding of Deep learning and different deep learning packages to have the most appropriate solutions for your problems.Style and approachCollection of hands-on recipes that would act as your all-time reference for your deep learning needs