[PDF] Deep Reinforcement Learning For Wireless Communications And Networking - eBooks Review

Deep Reinforcement Learning For Wireless Communications And Networking


Deep Reinforcement Learning For Wireless Communications And Networking
DOWNLOAD

Download Deep Reinforcement Learning For Wireless Communications And Networking PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Reinforcement Learning For Wireless Communications And Networking book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Deep Reinforcement Learning For Wireless Communications And Networking


Deep Reinforcement Learning For Wireless Communications And Networking
DOWNLOAD
Author : Dinh Thai Hoang
language : en
Publisher: John Wiley & Sons
Release Date : 2023-06-30

Deep Reinforcement Learning For Wireless Communications And Networking written by Dinh Thai Hoang and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Technology & Engineering categories.


Deep Reinforcement Learning for Wireless Communications and Networking Comprehensive guide to Deep Reinforcement Learning (DRL) as applied to wireless communication systems Deep Reinforcement Learning for Wireless Communications and Networking presents an overview of the development of DRL while providing fundamental knowledge about theories, formulation, design, learning models, algorithms and implementation of DRL together with a particular case study to practice. The book also covers diverse applications of DRL to address various problems in wireless networks, such as caching, offloading, resource sharing, and security. The authors discuss open issues by introducing some advanced DRL approaches to address emerging issues in wireless communications and networking. Covering new advanced models of DRL, e.g., deep dueling architecture and generative adversarial networks, as well as emerging problems considered in wireless networks, e.g., ambient backscatter communication, intelligent reflecting surfaces and edge intelligence, this is the first comprehensive book studying applications of DRL for wireless networks that presents the state-of-the-art research in architecture, protocol, and application design. Deep Reinforcement Learning for Wireless Communications and Networking covers specific topics such as: Deep reinforcement learning models, covering deep learning, deep reinforcement learning, and models of deep reinforcement learning Physical layer applications covering signal detection, decoding, and beamforming, power and rate control, and physical-layer security Medium access control (MAC) layer applications, covering resource allocation, channel access, and user/cell association Network layer applications, covering traffic routing, network classification, and network slicing With comprehensive coverage of an exciting and noteworthy new technology, Deep Reinforcement Learning for Wireless Communications and Networking is an essential learning resource for researchers and communications engineers, along with developers and entrepreneurs in autonomous systems, who wish to harness this technology in practical applications.



Artificial Intelligent Techniques For Wireless Communication And Networking


Artificial Intelligent Techniques For Wireless Communication And Networking
DOWNLOAD
Author : R. Kanthavel
language : en
Publisher: John Wiley & Sons
Release Date : 2022-02-24

Artificial Intelligent Techniques For Wireless Communication And Networking written by R. Kanthavel and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-24 with Computers categories.


ARTIFICIAL INTELLIGENT TECHNIQUES FOR WIRELESS COMMUNICATION AND NETWORKING The 20 chapters address AI principles and techniques used in wireless communication and networking and outline their benefit, function, and future role in the field. Wireless communication and networking based on AI concepts and techniques are explored in this book, specifically focusing on the current research in the field by highlighting empirical results along with theoretical concepts. The possibility of applying AI mechanisms towards security aspects in the communication domain is elaborated; also explored is the application side of integrated technologies that enhance AI-based innovations, insights, intelligent predictions, cost optimization, inventory management, identification processes, classification mechanisms, cooperative spectrum sensing techniques, ad-hoc network architecture, and protocol and simulation-based environments. Audience Researchers, industry IT engineers, and graduate students working on and implementing AI-based wireless sensor networks, 5G, IoT, deep learning, reinforcement learning, and robotics in WSN, and related technologies.



Applications Of Machine Learning In Wireless Communications


Applications Of Machine Learning In Wireless Communications
DOWNLOAD
Author : Ruisi He
language : en
Publisher: Institution of Engineering and Technology
Release Date : 2019-06-20

Applications Of Machine Learning In Wireless Communications written by Ruisi He and has been published by Institution of Engineering and Technology this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-20 with Technology & Engineering categories.


Machine learning explores the study and development of algorithms that can learn from and make predictions and decisions based on data. Applications of machine learning in wireless communications have been receiving a lot of attention, especially in the era of big data and IoT, where data mining and data analysis technologies are effective approaches to solving wireless system evaluation and design issues.



Machine Learning For Future Wireless Communications


Machine Learning For Future Wireless Communications
DOWNLOAD
Author : Fa-Long Luo
language : en
Publisher: John Wiley & Sons
Release Date : 2020-02-10

Machine Learning For Future Wireless Communications written by Fa-Long Luo and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-10 with Technology & Engineering categories.


A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.



Intelligent Wireless Communications


Intelligent Wireless Communications
DOWNLOAD
Author : George Mastorakis
language : en
Publisher: IET
Release Date : 2021-04-21

Intelligent Wireless Communications written by George Mastorakis and has been published by IET this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-21 with Science categories.


Aimed at researchers, engineers and scientists involved in the design and development of protocols and AI applications for wireless communication devices and networks, this edited book presents recent research and innovations in emerging AI methods and AI-powered mechanisms, and future perspectives in this field.



Machine Learning For Networking


Machine Learning For Networking
DOWNLOAD
Author : Éric Renault
language : en
Publisher: Springer
Release Date : 2019-05-10

Machine Learning For Networking written by Éric Renault and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-10 with Computers categories.


This book constitutes the thoroughly refereed proceedings of the First International Conference on Machine Learning for Networking, MLN 2018, held in Paris, France, in November 2018. The 22 revised full papers included in the volume were carefully reviewed and selected from 48 submissions. They present new trends in the following topics: Deep and reinforcement learning; Pattern recognition and classification for networks; Machine learning for network slicing optimization, 5G system, user behavior prediction, multimedia, IoT, security and protection; Optimization and new innovative machine learning methods; Performance analysis of machine learning algorithms; Experimental evaluations of machine learning; Data mining in heterogeneous networks; Distributed and decentralized machine learning algorithms; Intelligent cloud-support communications, resource allocation, energy-aware/green communications, software defined networks, cooperative networks, positioning and navigation systems, wireless communications, wireless sensor networks, underwater sensor networks.



Deep Reinforcement Learning For Wireless Networks


Deep Reinforcement Learning For Wireless Networks
DOWNLOAD
Author : F. Richard Yu
language : en
Publisher: Springer
Release Date : 2019-01-17

Deep Reinforcement Learning For Wireless Networks written by F. Richard Yu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-17 with Technology & Engineering categories.


This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme. There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results.. Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool.



Readings In Machine Learning


Readings In Machine Learning
DOWNLOAD
Author : Jude W. Shavlik
language : en
Publisher: Morgan Kaufmann
Release Date : 1990

Readings In Machine Learning written by Jude W. Shavlik and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with Computers categories.


The ability to learn is a fundamental characteristic of intelligent behavior. Consequently, machine learning has been a focus of artificial intelligence since the beginnings of AI in the 1950s. The 1980s saw tremendous growth in the field, and this growth promises to continue with valuable contributions to science, engineering, and business. Readings in Machine Learning collects the best of the published machine learning literature, including papers that address a wide range of learning tasks, and that introduce a variety of techniques for giving machines the ability to learn. The editors, in cooperation with a group of expert referees, have chosen important papers that empirically study, theoretically analyze, or psychologically justify machine learning algorithms. The papers are grouped into a dozen categories, each of which is introduced by the editors.



2021 Ieee Wireless Communications And Networking Conference Workshops Wcncw


2021 Ieee Wireless Communications And Networking Conference Workshops Wcncw
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2021

2021 Ieee Wireless Communications And Networking Conference Workshops Wcncw written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.




Artificial Intelligence In Wireless Robotics


Artificial Intelligence In Wireless Robotics
DOWNLOAD
Author : Kwang-Cheng Chen
language : en
Publisher: CRC Press
Release Date : 2022-09-01

Artificial Intelligence In Wireless Robotics written by Kwang-Cheng Chen and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-01 with Computers categories.


Robots, autonomous vehicles, unmanned aerial vehicles, and smart factory, will significantly change human living style in digital society. Artificial Intelligence in Wireless Robotics introduces how wireless communications and networking technology enhances facilitation of artificial intelligence in robotics, which bridges basic multi-disciplinary knowledge among artificial intelligence, wireless communications, computing, and control in robotics. A unique aspect of the book is to introduce applying communication and signal processing techniques to enhance traditional artificial intelligence in robotics and multi-agent systems. The technical contents of this book include fundamental knowledge in robotics, cyber-physical systems, artificial intelligence, statistical decision and Markov decision process, reinforcement learning, state estimation, localization, computer vision and multi-modal data fusion, robot planning, multi-agent systems, networked multi-agent systems, security and robustness of networked robots, and ultra-reliable and low-latency machine-to-machine networking. Examples and exercises are provided for easy and effective comprehension. Engineers wishing to extend knowledge in the robotics, AI, and wireless communications, would be benefited from this book. In the meantime, the book is ready as a textbook for senior undergraduate students or first-year graduate students in electrical engineering, computer engineering, computer science, and general engineering students. The readers of this book shall have basic knowledge in undergraduate probability and linear algebra, and basic programming capability, in order to enjoy deep reading.