[PDF] Density Estimation For Statistics And Data Analysis - eBooks Review

Density Estimation For Statistics And Data Analysis


Density Estimation For Statistics And Data Analysis
DOWNLOAD

Download Density Estimation For Statistics And Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Density Estimation For Statistics And Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Density Estimation For Statistics And Data Analysis


Density Estimation For Statistics And Data Analysis
DOWNLOAD
Author : Bernard. W. Silverman
language : en
Publisher: Routledge
Release Date : 2018-02-19

Density Estimation For Statistics And Data Analysis written by Bernard. W. Silverman and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-19 with Mathematics categories.


Although there has been a surge of interest in density estimation in recent years, much of the published research has been concerned with purely technical matters with insufficient emphasis given to the technique's practical value. Furthermore, the subject has been rather inaccessible to the general statistician. The account presented in this book places emphasis on topics of methodological importance, in the hope that this will facilitate broader practical application of density estimation and also encourage research into relevant theoretical work. The book also provides an introduction to the subject for those with general interests in statistics. The important role of density estimation as a graphical technique is reflected by the inclusion of more than 50 graphs and figures throughout the text. Several contexts in which density estimation can be used are discussed, including the exploration and presentation of data, nonparametric discriminant analysis, cluster analysis, simulation and the bootstrap, bump hunting, projection pursuit, and the estimation of hazard rates and other quantities that depend on the density. This book includes general survey of methods available for density estimation. The Kernel method, both for univariate and multivariate data, is discussed in detail, with particular emphasis on ways of deciding how much to smooth and on computation aspects. Attention is also given to adaptive methods, which smooth to a greater degree in the tails of the distribution, and to methods based on the idea of penalized likelihood.



Density Estimation For Statistics And Data Analysis


Density Estimation For Statistics And Data Analysis
DOWNLOAD
Author : Bernard. W. Silverman
language : en
Publisher: CRC Press
Release Date : 1986-04-01

Density Estimation For Statistics And Data Analysis written by Bernard. W. Silverman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1986-04-01 with Mathematics categories.


Although there has been a surge of interest in density estimation in recent years, much of the published research has been concerned with purely technical matters with insufficient emphasis given to the technique's practical value. Furthermore, the subject has been rather inaccessible to the general statistician. The account presented in this book places emphasis on topics of methodological importance, in the hope that this will facilitate broader practical application of density estimation and also encourage research into relevant theoretical work. The book also provides an introduction to the subject for those with general interests in statistics. The important role of density estimation as a graphical technique is reflected by the inclusion of more than 50 graphs and figures throughout the text. Several contexts in which density estimation can be used are discussed, including the exploration and presentation of data, nonparametric discriminant analysis, cluster analysis, simulation and the bootstrap, bump hunting, projection pursuit, and the estimation of hazard rates and other quantities that depend on the density. This book includes general survey of methods available for density estimation. The Kernel method, both for univariate and multivariate data, is discussed in detail, with particular emphasis on ways of deciding how much to smooth and on computation aspects. Attention is also given to adaptive methods, which smooth to a greater degree in the tails of the distribution, and to methods based on the idea of penalized likelihood.



Density Estimation For Statistics And Data Analysis


Density Estimation For Statistics And Data Analysis
DOWNLOAD
Author : Bernard. W. Silverman
language : en
Publisher:
Release Date : 2017

Density Estimation For Statistics And Data Analysis written by Bernard. W. Silverman and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Electronic books categories.


"Although there has been a surge of interest in density estimation in recent years, much of the published research has been concerned with purely technical matters with insufficient emphasis given to the technique's practical value. Furthermore, the subject has been rather inaccessible to the general statistician.The account presented in this book places emphasis on topics of methodological importance, in the hope that this will facilitate broader practical application of density estimation and also encourage research into relevant theoretical work. The book also provides an introduction to the subject for those with general interests in statistics. The important role of density estimation as a graphical technique is reflected by the inclusion of more than 50 graphs and figures throughout the text.Several contexts in which density estimation can be used are discussed, including the exploration and presentation of data, nonparametric discriminant analysis, cluster analysis, simulation and the bootstrap, bump hunting, projection pursuit, and the estimation of hazard rates and other quantities that depend on the density. This book includes general survey of methods available for density estimation. The Kernel method, both for univariate and multivariate data, is discussed in detail, with particular emphasis on ways of deciding how much to smooth and on computation aspects. Attention is also given to adaptive methods, which smooth to a greater degree in the tails of the distribution, and to methods based on the idea of penalized likelihood."--Provided by publisher.



Nonparametric Econometrics


Nonparametric Econometrics
DOWNLOAD
Author : Qi Li
language : en
Publisher: Princeton University Press
Release Date : 2011-10-09

Nonparametric Econometrics written by Qi Li and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-09 with Business & Economics categories.


A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.



Nonparametric Kernel Density Estimation And Its Computational Aspects


Nonparametric Kernel Density Estimation And Its Computational Aspects
DOWNLOAD
Author : Artur Gramacki
language : en
Publisher: Springer
Release Date : 2017-12-21

Nonparametric Kernel Density Estimation And Its Computational Aspects written by Artur Gramacki and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-21 with Technology & Engineering categories.


This book describes computational problems related to kernel density estimation (KDE) – one of the most important and widely used data smoothing techniques. A very detailed description of novel FFT-based algorithms for both KDE computations and bandwidth selection are presented. The theory of KDE appears to have matured and is now well developed and understood. However, there is not much progress observed in terms of performance improvements. This book is an attempt to remedy this. The book primarily addresses researchers and advanced graduate or postgraduate students who are interested in KDE and its computational aspects. The book contains both some background and much more sophisticated material, hence also more experienced researchers in the KDE area may find it interesting. The presented material is richly illustrated with many numerical examples using both artificial and real datasets. Also, a number of practical applications related to KDE are presented.



Applied Smoothing Techniques For Data Analysis


Applied Smoothing Techniques For Data Analysis
DOWNLOAD
Author : Adrian W. Bowman
language : en
Publisher: OUP Oxford
Release Date : 1997-08-14

Applied Smoothing Techniques For Data Analysis written by Adrian W. Bowman and has been published by OUP Oxford this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-08-14 with Mathematics categories.


The book describes the use of smoothing techniques in statistics, including both density estimation and nonparametric regression. Considerable advances in research in this area have been made in recent years. The aim of this text is to describe a variety of ways in which these methods can be applied to practical problems in statistics. The role of smoothing techniques in exploring data graphically is emphasised, but the use of nonparametric curves in drawing conclusions from data, as an extension of more standard parametric models, is also a major focus of the book. Examples are drawn from a wide range of applications. The book is intended for those who seek an introduction to the area, with an emphasis on applications rather than on detailed theory. It is therefore expected that the book will benefit those attending courses at an advanced undergraduate, or postgraduate, level, as well as researchers, both from statistics and from other disciplines, who wish to learn about and apply these techniques in practical data analysis. The text makes extensive reference to S-Plus, as a computing environment in which examples can be explored. S-Plus functions and example scripts are provided to implement many of the techniques described. These parts are, however, clearly separate from the main body of text, and can therefore easily be skipped by readers not interested in S-Plus.



Combinatorial Methods In Density Estimation


Combinatorial Methods In Density Estimation
DOWNLOAD
Author : Luc Devroye
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Combinatorial Methods In Density Estimation written by Luc Devroye and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Density estimation has evolved enormously since the days of bar plots and histograms, but researchers and users are still struggling with the problem of the selection of the bin widths. This text explores a new paradigm for the data-based or automatic selection of the free parameters of density estimates in general so that the expected error is within a given constant multiple of the best possible error. The paradigm can be used in nearly all density estimates and for most model selection problems, both parametric and nonparametric. It is the first book on this topic. The text is intended for first-year graduate students in statistics and learning theory, and offers a host of opportunities for further research and thesis topics. Each chapter corresponds roughly to one lecture, and is supplemented with many classroom exercises. A one year course in probability theory at the level of Feller's Volume 1 should be more than adequate preparation. Gabor Lugosi is Professor at Universitat Pompeu Fabra in Barcelona, and Luc Debroye is Professor at McGill University in Montreal. In 1996, the authors, together with Lászlo Györfi, published the successful text, A Probabilistic Theory of Pattern Recognition with Springer-Verlag. Both authors have made many contributions in the area of nonparametric estimation.



Combining Soft Computing And Statistical Methods In Data Analysis


Combining Soft Computing And Statistical Methods In Data Analysis
DOWNLOAD
Author : Christian Borgelt
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-10-12

Combining Soft Computing And Statistical Methods In Data Analysis written by Christian Borgelt and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-12 with Technology & Engineering categories.


Over the last forty years there has been a growing interest to extend probability theory and statistics and to allow for more flexible modelling of imprecision, uncertainty, vagueness and ignorance. The fact that in many real-life situations data uncertainty is not only present in the form of randomness (stochastic uncertainty) but also in the form of imprecision/fuzziness is but one point underlining the need for a widening of statistical tools. Most such extensions originate in a "softening" of classical methods, allowing, in particular, to work with imprecise or vague data, considering imprecise or generalized probabilities and fuzzy events, etc. About ten years ago the idea of establishing a recurrent forum for discussing new trends in the before-mentioned context was born and resulted in the first International Conference on Soft Methods in Probability and Statistics (SMPS) that was held in Warsaw in 2002. In the following years the conference took place in Oviedo (2004), in Bristol (2006) and in Toulouse (2008). In the current edition the conference returns to Oviedo. This edited volume is a collection of papers presented at the SMPS 2010 conference held in Mieres and Oviedo. It gives a comprehensive overview of current research into the fusion of soft methods with probability and statistics.



Density Ratio Estimation In Machine Learning


Density Ratio Estimation In Machine Learning
DOWNLOAD
Author : Masashi Sugiyama
language : en
Publisher: Cambridge University Press
Release Date : 2012-02-20

Density Ratio Estimation In Machine Learning written by Masashi Sugiyama and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-20 with Computers categories.


This book introduces theories, methods and applications of density ratio estimation, a newly emerging paradigm in the machine learning community.



Handbook Of Computational Statistics


Handbook Of Computational Statistics
DOWNLOAD
Author : James E. Gentle
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-07-06

Handbook Of Computational Statistics written by James E. Gentle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-07-06 with Computers categories.


The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with "How Computational Statistics became the backbone of modern data science" (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active research. The second part (Chs. 2 - 15) presents several topics in the supporting field of statistical computing. Emphasis is placed on the need for fast and accurate numerical algorithms, and some of the basic methodologies for transformation, database handling, high-dimensional data and graphics treatment are discussed. The third part (Chs. 16 - 33) focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Lastly, a set of selected applications (Chs. 34 - 38) like Bioinformatics, Medical Imaging, Finance, Econometrics and Network Intrusion Detection highlight the usefulness of computational statistics in real-world applications.