Deploying Machine Learning

DOWNLOAD
Download Deploying Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deploying Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Deploy Machine Learning Models To Production
DOWNLOAD
Author : Pramod Singh
language : en
Publisher: Apress
Release Date : 2020-12-15
Deploy Machine Learning Models To Production written by Pramod Singh and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-15 with Computers categories.
Build and deploy machine learning and deep learning models in production with end-to-end examples. This book begins with a focus on the machine learning model deployment process and its related challenges. Next, it covers the process of building and deploying machine learning models using different web frameworks such as Flask and Streamlit. A chapter on Docker follows and covers how to package and containerize machine learning models. The book also illustrates how to build and train machine learning and deep learning models at scale using Kubernetes. The book is a good starting point for people who want to move to the next level of machine learning by taking pre-built models and deploying them into production. It also offers guidance to those who want to move beyond Jupyter notebooks to training models at scale on cloud environments. All the code presented in the book is available in the form of Python scripts for you to try the examples and extend them in interesting ways. What You Will Learn Build, train, and deploy machine learning models at scale using Kubernetes Containerize any kind of machine learning model and run it on any platform using Docker Deploy machine learning and deep learning models using Flask and Streamlit frameworks Who This Book Is For Data engineers, data scientists, analysts, and machine learning and deep learning engineers
Deploy Machine Learning Models To Production
DOWNLOAD
Author : Pramod Singh
language : en
Publisher:
Release Date : 2021
Deploy Machine Learning Models To Production written by Pramod Singh and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Computer programming categories.
Build and deploy machine learning and deep learning models in production with end-to-end examples. This book begins with a focus on the machine learning model deployment process and its related challenges. Next, it covers the process of building and deploying machine learning models using different web frameworks such as Flask and Streamlit. A chapter on Docker follows and covers how to package and containerize machine learning models. The book also illustrates how to build and train machine learning and deep learning models at scale using Kubernetes. The book is a good starting point for people who want to move to the next level of machine learning by taking pre-built models and deploying them into production. It also offers guidance to those who want to move beyond Jupyter notebooks to training models at scale on cloud environments. All the code presented in the book is available in the form of Python scripts for you to try the examples and extend them in interesting ways. You will: Build, train, and deploy machine learning models at scale using Kubernetes Containerize any kind of machine learning model and run it on any platform using Docker Deploy machine learning and deep learning models using Flask and Streamlit frameworks.
Building Machine Learning Pipelines
DOWNLOAD
Author : Hannes Hapke
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2020-07-13
Building Machine Learning Pipelines written by Hannes Hapke and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-13 with Computers categories.
Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques
Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29
Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Keras To Kubernetes
DOWNLOAD
Author : Dattaraj Rao
language : en
Publisher: John Wiley & Sons
Release Date : 2019-05-07
Keras To Kubernetes written by Dattaraj Rao and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-07 with Computers categories.
Build a Keras model to scale and deploy on a Kubernetes cluster We have seen an exponential growth in the use of Artificial Intelligence (AI) over last few years. AI is becoming the new electricity and is touching every industry from retail to manufacturing to healthcare to entertainment. Within AI, were seeing a particular growth in Machine Learning (ML) and Deep Learning (DL) applications. ML is all about learning relationships from labeled (Supervised) or unlabeled data (Unsupervised). DL has many layers of learning and can extract patterns from unstructured data like images, video, audio, etc. em style="box-sizing: border-box;"Keras to Kubernetes: The Journey of a Machine Learning Model to Production takes you through real-world examples of building DL models in Keras for recognizing product logos in images and extracting sentiment from text. You will then take that trained model and package it as a web application container before learning how to deploy this model at scale on a Kubernetes cluster. You will understand the different practical steps involved in real-world ML implementations which go beyond the algorithms. Find hands-on learning examples Learn to uses Keras and Kubernetes to deploy Machine Learning models Discover new ways to collect and manage your image and text data with Machine Learning Reuse examples as-is to deploy your models Understand the ML model development lifecycle and deployment to production If youre ready to learn about one of the most popular DL frameworks and build production applications with it, youve come to the right place!
Building Machine Learning And Deep Learning Models On Google Cloud Platform
DOWNLOAD
Author : Ekaba Bisong
language : en
Publisher:
Release Date : 2019
Building Machine Learning And Deep Learning Models On Google Cloud Platform written by Ekaba Bisong and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Cloud computing categories.
Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is divided into eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. You will: Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your results Know the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products.
Programming Pytorch For Deep Learning
DOWNLOAD
Author : Ian Pointer
language : en
Publisher: O'Reilly Media
Release Date : 2019-09-20
Programming Pytorch For Deep Learning written by Ian Pointer and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-20 with Computers categories.
Take the next steps toward mastering deep learning, the machine learning method that’s transforming the world around us by the second. In this practical book, you’ll get up to speed on key ideas using Facebook’s open source PyTorch framework and gain the latest skills you need to create your very own neural networks. Ian Pointer shows you how to set up PyTorch on a cloud-based environment, then walks you through the creation of neural architectures that facilitate operations on images, sound, text,and more through deep dives into each element. He also covers the critical concepts of applying transfer learning to images, debugging models, and PyTorch in production. Learn how to deploy deep learning models to production Explore PyTorch use cases from several leading companies Learn how to apply transfer learning to images Apply cutting-edge NLP techniques using a model trained on Wikipedia Use PyTorch’s torchaudio library to classify audio data with a convolutional-based model Debug PyTorch models using TensorBoard and flame graphs Deploy PyTorch applications in production in Docker containers and Kubernetes clusters running on Google Cloud
Beginning Artificial Intelligence With The Raspberry Pi
DOWNLOAD
Author : Donald J. Norris
language : en
Publisher: Apress
Release Date : 2017-06-05
Beginning Artificial Intelligence With The Raspberry Pi written by Donald J. Norris and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-05 with Computers categories.
Gain a gentle introduction to the world of Artificial Intelligence (AI) using the Raspberry Pi as the computing platform. Most of the major AI topics will be explored, including expert systems, machine learning both shallow and deep, fuzzy logic control, and more! AI in action will be demonstrated using the Python language on the Raspberry Pi. The Prolog language will also be introduced and used to demonstrate fundamental AI concepts. In addition, the Wolfram language will be used as part of the deep machine learning demonstrations. A series of projects will walk you through how to implement AI concepts with the Raspberry Pi. Minimal expense is needed for the projects as only a few sensors and actuators will be required. Beginners and hobbyists can jump right in to creating AI projects with the Raspberry PI using this book. What You'll Learn What AI is and—as importantly—what it is not Inference and expert systems Machine learning both shallow and deep Fuzzy logic and how to apply to an actual control system When AI might be appropriate to include in a system Constraints and limitations of the Raspberry Pi AI implementation Who This Book Is For Hobbyists, makers, engineers involved in designing autonomous systems and wanting to gain an education in fundamental AI concepts, and non-technical readers who want to understand what AI is and how it might affect their lives.
Learn Amazon Sagemaker
DOWNLOAD
Author : Julien Simon
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-11-26
Learn Amazon Sagemaker written by Julien Simon and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-26 with Computers categories.
Swiftly build and deploy machine learning models without managing infrastructure and boost productivity using the latest Amazon SageMaker capabilities such as Studio, Autopilot, Data Wrangler, Pipelines, and Feature Store Key FeaturesBuild, train, and deploy machine learning models quickly using Amazon SageMakerOptimize the accuracy, cost, and fairness of your modelsCreate and automate end-to-end machine learning workflows on Amazon Web Services (AWS)Book Description Amazon SageMaker enables you to quickly build, train, and deploy machine learning models at scale without managing any infrastructure. It helps you focus on the machine learning problem at hand and deploy high-quality models by eliminating the heavy lifting typically involved in each step of the ML process. This second edition will help data scientists and ML developers to explore new features such as SageMaker Data Wrangler, Pipelines, Clarify, Feature Store, and much more. You'll start by learning how to use various capabilities of SageMaker as a single toolset to solve ML challenges and progress to cover features such as AutoML, built-in algorithms and frameworks, and writing your own code and algorithms to build ML models. The book will then show you how to integrate Amazon SageMaker with popular deep learning libraries, such as TensorFlow and PyTorch, to extend the capabilities of existing models. You'll also see how automating your workflows can help you get to production faster with minimum effort and at a lower cost. Finally, you'll explore SageMaker Debugger and SageMaker Model Monitor to detect quality issues in training and production. By the end of this Amazon book, you'll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation. What you will learnBecome well-versed with data annotation and preparation techniquesUse AutoML features to build and train machine learning models with AutoPilotCreate models using built-in algorithms and frameworks and your own codeTrain computer vision and natural language processing (NLP) models using real-world examplesCover training techniques for scaling, model optimization, model debugging, and cost optimizationAutomate deployment tasks in a variety of configurations using SDK and several automation toolsWho this book is for This book is for software engineers, machine learning developers, data scientists, and AWS users who are new to using Amazon SageMaker and want to build high-quality machine learning models without worrying about infrastructure. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. A solid understanding of machine learning concepts and the Python programming language will also be beneficial.
Efficient Ai Solutions Deploying Deep Learning With Onnx And Cuda
DOWNLOAD
Author : Peter Jones
language : en
Publisher: Walzone Press
Release Date : 2025-01-12
Efficient Ai Solutions Deploying Deep Learning With Onnx And Cuda written by Peter Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-12 with Computers categories.
Dive into the world of containers with "Mastering Docker Containers: From Development to Deployment," your comprehensive guide to mastering Docker, the revolutionary technology that has reshaped software development and deployment. This expertly crafted book is designed for developers, DevOps professionals, and systems administrators who are familiar with the basics of Docker and looking to elevate their skills to the next level. Spanning from foundational concepts to complex advanced topics, this book covers the entire spectrum of Docker functionalities and best practices. Explore chapters dedicated to image creation, optimization, networking, data management, security, debugging, monitoring, and the pivotal role of Docker in Continuous Integration and Continuous Deployment (CI/CD) processes. Each chapter is meticulously structured to provide in-depth knowledge, practical tips, and best practices, ensuring you gain a comprehensive understanding of Docker's capabilities and how to leverage them in real-world scenarios. Whether you aim to optimize your development workflows, secure your containerized applications, or implement scalable CI/CD pipelines, this book provides the insights and guidance needed to achieve proficiency in Docker operations. Empower yourself to efficiently manage and deploy containerized applications with confidence. 'Mastering Docker Containers: From Development to Deployment' is the essential resource for professionals seeking to harness the full potential of Docker in modern software environments.