[PDF] Efficient Ai Solutions Deploying Deep Learning With Onnx And Cuda - eBooks Review

Efficient Ai Solutions Deploying Deep Learning With Onnx And Cuda


Efficient Ai Solutions Deploying Deep Learning With Onnx And Cuda
DOWNLOAD

Download Efficient Ai Solutions Deploying Deep Learning With Onnx And Cuda PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Efficient Ai Solutions Deploying Deep Learning With Onnx And Cuda book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Efficient Ai Solutions Deploying Deep Learning With Onnx And Cuda


Efficient Ai Solutions Deploying Deep Learning With Onnx And Cuda
DOWNLOAD
Author : Peter Jones
language : en
Publisher: Walzone Press
Release Date : 2025-01-12

Efficient Ai Solutions Deploying Deep Learning With Onnx And Cuda written by Peter Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-12 with Computers categories.


Dive into the world of containers with "Mastering Docker Containers: From Development to Deployment," your comprehensive guide to mastering Docker, the revolutionary technology that has reshaped software development and deployment. This expertly crafted book is designed for developers, DevOps professionals, and systems administrators who are familiar with the basics of Docker and looking to elevate their skills to the next level. Spanning from foundational concepts to complex advanced topics, this book covers the entire spectrum of Docker functionalities and best practices. Explore chapters dedicated to image creation, optimization, networking, data management, security, debugging, monitoring, and the pivotal role of Docker in Continuous Integration and Continuous Deployment (CI/CD) processes. Each chapter is meticulously structured to provide in-depth knowledge, practical tips, and best practices, ensuring you gain a comprehensive understanding of Docker's capabilities and how to leverage them in real-world scenarios. Whether you aim to optimize your development workflows, secure your containerized applications, or implement scalable CI/CD pipelines, this book provides the insights and guidance needed to achieve proficiency in Docker operations. Empower yourself to efficiently manage and deploy containerized applications with confidence. 'Mastering Docker Containers: From Development to Deployment' is the essential resource for professionals seeking to harness the full potential of Docker in modern software environments.



Recent Innovations In Artificial Intelligence And Smart Applications


Recent Innovations In Artificial Intelligence And Smart Applications
DOWNLOAD
Author : Mostafa Al-Emran
language : en
Publisher: Springer Nature
Release Date : 2022-10-01

Recent Innovations In Artificial Intelligence And Smart Applications written by Mostafa Al-Emran and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-01 with Technology & Engineering categories.


This book tackles the recent research trends on the role of AI in advancing automotive manufacturing, augmented reality, sustainable development in smart cities, telemedicine, and robotics. It sheds light on the recent AI innovations in classical machine learning, deep learning, Internet of Things (IoT), Blockchain, knowledge representation, knowledge management, big data, and natural language processing (NLP). The edited book covers empirical and reviews studies that primarily concentrate on the aforementioned issues, which would assist scholars in pursuing future research in the domain and identifying the possible future developments of AI applications.



Inside Nvidia Jensen Huang S Vision For Artificial Intelligence


Inside Nvidia Jensen Huang S Vision For Artificial Intelligence
DOWNLOAD
Author : Alistair Maxwell, PhD
language : en
Publisher: AGI Publishing
Release Date : 2024-08-06

Inside Nvidia Jensen Huang S Vision For Artificial Intelligence written by Alistair Maxwell, PhD and has been published by AGI Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-06 with Biography & Autobiography categories.


"Inside Nvidia: Jensen Huang's Vision for Artificial Intelligence" by Dr. Alistair Maxwell, PhD, is a comprehensive exploration of Nvidia's journey from a fledgling graphics card company to a global leader in AI technology. Through meticulous research and insightful analysis, Dr. Maxwell delves into the strategic decisions and visionary leadership of Jensen Huang, the co-founder and CEO of Nvidia. This book provides readers with an in-depth understanding of how Nvidia has revolutionized industries ranging from gaming to healthcare with its cutting-edge GPUs and AI advancements. It covers the company's strategic acquisitions, partnerships, and innovations that have positioned it at the forefront of the AI revolution. Dr. Maxwell also explains complex AI concepts, making them accessible to the average reader, and explores the ethical considerations and future prospects of AI technology. From the architecture of Nvidia’s GPUs to their applications in autonomous vehicles, healthcare, and beyond, "Inside Nvidia" is a must-read for anyone interested in the intersection of technology, business, and artificial intelligence. Published by AGI Publishing, this book is not only a detailed account of Nvidia’s past and present but also a visionary look at the future of AI and its potential to transform our world. Available now on Google Play, this book is perfect for technology enthusiasts, business leaders, and anyone curious about the future of AI. Dive into the fascinating story of Nvidia and discover how Jensen Huang's vision is shaping the future of artificial intelligence.



Deep Learning With Azure


Deep Learning With Azure
DOWNLOAD
Author : Mathew Salvaris
language : en
Publisher:
Release Date : 2018

Deep Learning With Azure written by Mathew Salvaris and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Microsoft Azure (Computing platform) categories.


Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer. Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I begin and how do I get started with AI?Written by expert data scientists at Microsoft, Deep Learning with the Microsoft AI Platform helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI. What You'll LearnBecome familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning services and Batch AIUse pre-built AI capabilities (Computer Vision, OCR, gender, emotion, landmark detection, and more)Understand the common deep learning models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs) with sample code and understand how the field is evolvingDiscover the options for training and operationalizing deep learning models on Azure Who This Book Is ForProfessional data scientists who are interested in learning more about deep learning and how to use the Microsoft AI platform. Some experience with Python is helpful.



Learning Pytorch 2 0 Second Edition


Learning Pytorch 2 0 Second Edition
DOWNLOAD
Author : Matthew Rosch
language : en
Publisher: GitforGits
Release Date : 2024-10-05

Learning Pytorch 2 0 Second Edition written by Matthew Rosch and has been published by GitforGits this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-05 with Computers categories.


"Learning PyTorch 2.0, Second Edition" is a fast-learning, hands-on book that emphasizes practical PyTorch scripting and efficient model development using PyTorch 2.3 and CUDA 12. This edition is centered on practical applications and presents a concise methodology for attaining proficiency in the most recent features of PyTorch. The book presents a practical program based on the fish dataset which provides step-by-step guidance through the processes of building, training and deploying neural networks, with each example prepared for immediate implementation. Given your familiarity with machine learning and neural networks, this book offers concise explanations of foundational topics, allowing you to proceed directly to the practical, advanced aspects of PyTorch programming. The key learnings include the design of various types of neural networks, the use of torch.compile() for performance optimization, the deployment of models using TorchServe, and the implementation of quantization for efficient inference. Furthermore, you will also learn to migrate TensorFlow models to PyTorch using the ONNX format. The book employs essential libraries, including torchvision, torchserve, tf2onnx, onnxruntime, and requests, to facilitate seamless integration of PyTorch with production environments. Regardless of whether the objective is to fine-tune models or to deploy them on a large scale, this second edition is designed to ensure maximum efficiency and speed, with practical PyTorch scripting at the forefront of each chapter. Key Learnings Master tensor manipulations and advanced operations using PyTorch's efficient tensor libraries. Build feedforward, convolutional, and recurrent neural networks from scratch. Implement transformer models for modern natural language processing tasks. Use CUDA 12 and mixed precision training (AMP) to accelerate model training and inference. Deploy PyTorch models in production using TorchServe, including multi-model serving and versioning. Migrate TensorFlow models to PyTorch using ONNX format for seamless cross-framework compatibility. Optimize neural network architectures using torch.compile() for improved speed and efficiency. Utilize PyTorch's Quantization API to reduce model size and speed up inference. Setup custom layers and architectures for neural networks to tackle domain-specific problems. Monitor and log model performance in real-time using TorchServe's built-in tools and configurations. Table of Content Introduction To PyTorch 2.3 and CUDA 12 Getting Started with Tensors Building Neural Networks with PyTorch Training Neural Networks Advanced Neural Network Architectures Quantization and Model Optimization Migrating TensorFlow to PyTorch Deploying PyTorch Models with TorchServe



Practical Machine Learning With Rust


Practical Machine Learning With Rust
DOWNLOAD
Author : Joydeep Bhattacharjee
language : en
Publisher: Apress
Release Date : 2019-12-10

Practical Machine Learning With Rust written by Joydeep Bhattacharjee and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-10 with Mathematics categories.


Explore machine learning in Rust and learn about the intricacies of creating machine learning applications. This book begins by covering the important concepts of machine learning such as supervised, unsupervised, and reinforcement learning, and the basics of Rust. Further, you’ll dive into the more specific fields of machine learning, such as computer vision and natural language processing, and look at the Rust libraries that help create applications for those domains. We will also look at how to deploy these applications either on site or over the cloud. After reading Practical Machine Learning with Rust, you will have a solid understanding of creating high computation libraries using Rust. Armed with the knowledge of this amazing language, you will be able to create applications that are more performant, memory safe, and less resource heavy. What You Will Learn Write machine learning algorithms in Rust Use Rust libraries for different tasks in machine learning Create concise Rust packages for your machine learning applications Implement NLP and computer vision in Rust Deploy your code in the cloud and on bare metal servers Who This Book Is For Machine learning engineers and software engineers interested in building machine learning applications in Rust.



Deep Learning With Pytorch


Deep Learning With Pytorch
DOWNLOAD
Author : Luca Pietro Giovanni Antiga
language : en
Publisher: Simon and Schuster
Release Date : 2020-07-01

Deep Learning With Pytorch written by Luca Pietro Giovanni Antiga and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-01 with Computers categories.


“We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production



Deep Learning Deployment With Onnx And Cuda


Deep Learning Deployment With Onnx And Cuda
DOWNLOAD
Author : Nate Phoetean
language : en
Publisher: Independently Published
Release Date : 2024-04-05

Deep Learning Deployment With Onnx And Cuda written by Nate Phoetean and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-05 with Computers categories.


Unlock the full potential of deep learning with "Deep Learning Deployment with ONNX and CUDA", your comprehensive guide to deploying high-performance AI models across diverse environments. This expertly crafted book navigates the intricate landscape of deep learning deployment, offering in-depth coverage of the pivotal technologies ONNX and CUDA. From optimizing and preparing models for deployment to leveraging accelerated computing for real-time inference, this book equips you with the essential knowledge to bring your deep learning projects to life. Dive into the nuances of model interoperability with ONNX, understand the architecture of CUDA for parallel computing, and explore advanced optimization techniques to enhance model performance. Whether you're deploying to the cloud, edge devices, or mobile platforms, "Deep Learning Deployment with ONNX and CUDA" provides strategic insights into cross-platform deployment, ensuring your models achieve broad accessibility and optimal performance. Designed for data scientists, machine learning engineers, and software developers, this resource assumes a foundational understanding of deep learning, guiding readers through a seamless transition from training to production. Troubleshoot with ease and adopt best practices to stay ahead of deployment challenges. Prepare for the future of deep learning deployment with a closer look at emerging trends and technologies shaping the field. Embrace the future of AI with "Deep Learning Deployment with ONNX and CUDA" - your pathway to deploying efficient, scalable, and robust deep learning models.



Ibm Power Systems Enterprise Ai Solutions


Ibm Power Systems Enterprise Ai Solutions
DOWNLOAD
Author : Scott Vetter
language : en
Publisher: IBM Redbooks
Release Date : 2019-09-25

Ibm Power Systems Enterprise Ai Solutions written by Scott Vetter and has been published by IBM Redbooks this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-25 with Computers categories.


This IBM® Redpaper publication helps the line of business (LOB), data science, and information technology (IT) teams develop an information architecture (IA) for their enterprise artificial intelligence (AI) environment. It describes the challenges that are faced by the three roles when creating and deploying enterprise AI solutions, and how they can collaborate for best results. This publication also highlights the capabilities of the IBM Cognitive Systems and AI solutions: IBM Watson® Machine Learning Community Edition IBM Watson Machine Learning Accelerator (WMLA) IBM PowerAI Vision IBM Watson Machine Learning IBM Watson Studio Local IBM Video Analytics H2O Driverless AI IBM Spectrum® Scale IBM Spectrum Discover This publication examines the challenges through five different use case examples: Artificial vision Natural language processing (NLP) Planning for the future Machine learning (ML) AI teaming and collaboration This publication targets readers from LOBs, data science teams, and IT departments, and anyone that is interested in understanding how to build an IA to support enterprise AI development and deployment.



Math For Deep Learning


Math For Deep Learning
DOWNLOAD
Author : Ronald T. Kneusel
language : en
Publisher: No Starch Press
Release Date : 2021-12-07

Math For Deep Learning written by Ronald T. Kneusel and has been published by No Starch Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-07 with Computers categories.


Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits. With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning. You’ll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You’ll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network. In addition you’ll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.