Derivatives Analytics With Python

DOWNLOAD
Download Derivatives Analytics With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Derivatives Analytics With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Derivatives Analytics With Python
DOWNLOAD
Author : Yves Hilpisch
language : en
Publisher: John Wiley & Sons
Release Date : 2015-08-03
Derivatives Analytics With Python written by Yves Hilpisch and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-08-03 with Business & Economics categories.
Supercharge options analytics and hedging using the power of Python Derivatives Analytics with Python shows you how to implement market-consistent valuation and hedging approaches using advanced financial models, efficient numerical techniques, and the powerful capabilities of the Python programming language. This unique guide offers detailed explanations of all theory, methods, and processes, giving you the background and tools necessary to value stock index options from a sound foundation. You'll find and use self-contained Python scripts and modules and learn how to apply Python to advanced data and derivatives analytics as you benefit from the 5,000+ lines of code that are provided to help you reproduce the results and graphics presented. Coverage includes market data analysis, risk-neutral valuation, Monte Carlo simulation, model calibration, valuation, and dynamic hedging, with models that exhibit stochastic volatility, jump components, stochastic short rates, and more. The companion website features all code and IPython Notebooks for immediate execution and automation. Python is gaining ground in the derivatives analytics space, allowing institutions to quickly and efficiently deliver portfolio, trading, and risk management results. This book is the finance professional's guide to exploiting Python's capabilities for efficient and performing derivatives analytics. Reproduce major stylized facts of equity and options markets yourself Apply Fourier transform techniques and advanced Monte Carlo pricing Calibrate advanced option pricing models to market data Integrate advanced models and numeric methods to dynamically hedge options Recent developments in the Python ecosystem enable analysts to implement analytics tasks as performing as with C or C++, but using only about one-tenth of the code or even less. Derivatives Analytics with Python — Data Analysis, Models, Simulation, Calibration and Hedging shows you what you need to know to supercharge your derivatives and risk analytics efforts.
Python For Finance
DOWNLOAD
Author : Yves J. Hilpisch
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-12-05
Python For Finance written by Yves J. Hilpisch and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-05 with Computers categories.
The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
Listed Volatility And Variance Derivatives
DOWNLOAD
Author : Yves Hilpisch
language : en
Publisher: John Wiley & Sons
Release Date : 2016-12-27
Listed Volatility And Variance Derivatives written by Yves Hilpisch and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-27 with Business & Economics categories.
Leverage Python for expert-level volatility and variance derivative trading Listed Volatility and Variance Derivatives is a comprehensive treatment of all aspects of these increasingly popular derivatives products, and has the distinction of being both the first to cover European volatility and variance products provided by Eurex and the first to offer Python code for implementing comprehensive quantitative analyses of these financial products. For those who want to get started right away, the book is accompanied by a dedicated Web page and a Github repository that includes all the code from the book for easy replication and use, as well as a hosted version of all the code for immediate execution. Python is fast making inroads into financial modelling and derivatives analytics, and recent developments allow Python to be as fast as pure C++ or C while consisting generally of only 10% of the code lines associated with the compiled languages. This complete guide offers rare insight into the use of Python to undertake complex quantitative analyses of listed volatility and variance derivatives. Learn how to use Python for data and financial analysis, and reproduce stylised facts on volatility and variance markets Gain an understanding of the fundamental techniques of modelling volatility and variance and the model-free replication of variance Familiarise yourself with micro structure elements of the markets for listed volatility and variance derivatives Reproduce all results and graphics with IPython/Jupyter Notebooks and Python codes that accompany the book Listed Volatility and Variance Derivatives is the complete guide to Python-based quantitative analysis of these Eurex derivatives products.
Python For Finance
DOWNLOAD
Author : Yves Hilpisch
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2014-12-11
Python For Finance written by Yves Hilpisch and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-11 with Computers categories.
The financial industry has adopted Python at a tremendous rate recently, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. This hands-on guide helps both developers and quantitative analysts get started with Python, and guides you through the most important aspects of using Python for quantitative finance. Using practical examples through the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks, with topics that include: Fundamentals: Python data structures, NumPy array handling, time series analysis with pandas, visualization with matplotlib, high performance I/O operations with PyTables, date/time information handling, and selected best practices Financial topics: mathematical techniques with NumPy, SciPy and SymPy such as regression and optimization; stochastics for Monte Carlo simulation, Value-at-Risk, and Credit-Value-at-Risk calculations; statistics for normality tests, mean-variance portfolio optimization, principal component analysis (PCA), and Bayesian regression Special topics: performance Python for financial algorithms, such as vectorization and parallelization, integrating Python with Excel, and building financial applications based on Web technologies
Python For Finance Cookbook
DOWNLOAD
Author : Eryk Lewinson
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-31
Python For Finance Cookbook written by Eryk Lewinson and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.
Solve common and not-so-common financial problems using Python libraries such as NumPy, SciPy, and pandas Key FeaturesUse powerful Python libraries such as pandas, NumPy, and SciPy to analyze your financial dataExplore unique recipes for financial data analysis and processing with PythonEstimate popular financial models such as CAPM and GARCH using a problem-solution approachBook Description Python is one of the most popular programming languages used in the financial industry, with a huge set of accompanying libraries. In this book, you'll cover different ways of downloading financial data and preparing it for modeling. You'll calculate popular indicators used in technical analysis, such as Bollinger Bands, MACD, RSI, and backtest automatic trading strategies. Next, you'll cover time series analysis and models, such as exponential smoothing, ARIMA, and GARCH (including multivariate specifications), before exploring the popular CAPM and the Fama-French three-factor model. You'll then discover how to optimize asset allocation and use Monte Carlo simulations for tasks such as calculating the price of American options and estimating the Value at Risk (VaR). In later chapters, you'll work through an entire data science project in the financial domain. You'll also learn how to solve the credit card fraud and default problems using advanced classifiers such as random forest, XGBoost, LightGBM, and stacked models. You'll then be able to tune the hyperparameters of the models and handle class imbalance. Finally, you'll focus on learning how to use deep learning (PyTorch) for approaching financial tasks. By the end of this book, you’ll have learned how to effectively analyze financial data using a recipe-based approach. What you will learnDownload and preprocess financial data from different sourcesBacktest the performance of automatic trading strategies in a real-world settingEstimate financial econometrics models in Python and interpret their resultsUse Monte Carlo simulations for a variety of tasks such as derivatives valuation and risk assessmentImprove the performance of financial models with the latest Python librariesApply machine learning and deep learning techniques to solve different financial problemsUnderstand the different approaches used to model financial time series dataWho this book is for This book is for financial analysts, data analysts, and Python developers who want to learn how to implement a broad range of tasks in the finance domain. Data scientists looking to devise intelligent financial strategies to perform efficient financial analysis will also find this book useful. Working knowledge of the Python programming language is mandatory to grasp the concepts covered in the book effectively.
Financial Signal Processing And Machine Learning
DOWNLOAD
Author : Ali N. Akansu
language : en
Publisher: John Wiley & Sons
Release Date : 2016-05-31
Financial Signal Processing And Machine Learning written by Ali N. Akansu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-31 with Technology & Engineering categories.
The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.
Derivatives Analytics With Python
DOWNLOAD
Author : Yves Hilpisch
language : en
Publisher: John Wiley & Sons
Release Date : 2015-06-15
Derivatives Analytics With Python written by Yves Hilpisch and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-15 with Business & Economics categories.
Supercharge options analytics and hedging using the power ofPython Derivatives Analytics with Python shows you how toimplement market-consistent valuation and hedging approaches usingadvanced financial models, efficient numerical techniques, and thepowerful capabilities of the Python programming language. Thisunique guide offers detailed explanations of all theory, methods,and processes, giving you the background and tools necessary tovalue stock index options from a sound foundation. You'll find anduse self-contained Python scripts and modules and learn how toapply Python to advanced data and derivatives analytics as youbenefit from the 5,000+ lines of code that are provided to help youreproduce the results and graphics presented. Coverage includesmarket data analysis, risk-neutral valuation, Monte Carlosimulation, model calibration, valuation, and dynamic hedging, withmodels that exhibit stochastic volatility, jump components,stochastic short rates, and more. The companion website featuresall code and IPython Notebooks for immediate execution andautomation. Python is gaining ground in the derivatives analytics space,allowing institutions to quickly and efficiently deliver portfolio,trading, and risk management results. This book is the financeprofessional's guide to exploiting Python's capabilities forefficient and performing derivatives analytics. Reproduce major stylized facts of equity and options marketsyourself Apply Fourier transform techniques and advanced Monte Carlopricing Calibrate advanced option pricing models to market data Integrate advanced models and numeric methods to dynamicallyhedge options Recent developments in the Python ecosystem enable analysts toimplement analytics tasks as performing as with C or C++, but usingonly about one-tenth of the code or even less. DerivativesAnalytics with Python — Data Analysis, Models, Simulation,Calibration and Hedging shows you what you need to know tosupercharge your derivatives and risk analytics efforts.
Algorithmic Short Selling With Python
DOWNLOAD
Author : Laurent Bernut
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-09-30
Algorithmic Short Selling With Python written by Laurent Bernut and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-30 with Business & Economics categories.
Leverage Python source code to revolutionize your short selling strategy and to consistently make profits in bull, bear, and sideways markets Key Features Understand techniques such as trend following, mean reversion, position sizing, and risk management in a short-selling context Implement Python source code to explore and develop your own investment strategy Test your trading strategies to limit risk and increase profits Book Description If you are in the long/short business, learning how to sell short is not a choice. Short selling is the key to raising assets under management. This book will help you demystify and hone the short selling craft, providing Python source code to construct a robust long/short portfolio. It discusses fundamental and advanced trading concepts from the perspective of a veteran short seller. This book will take you on a journey from an idea (“buy bullish stocks, sell bearish ones”) to becoming part of the elite club of long/short hedge fund algorithmic traders. You'll explore key concepts such as trading psychology, trading edge, regime definition, signal processing, position sizing, risk management, and asset allocation, one obstacle at a time. Along the way, you'll will discover simple methods to consistently generate investment ideas, and consider variables that impact returns, volatility, and overall attractiveness of returns. By the end of this book, you'll not only become familiar with some of the most sophisticated concepts in capital markets, but also have Python source code to construct a long/short product that investors are bound to find attractive. What you will learn Develop the mindset required to win the infinite, complex, random game called the stock market Demystify short selling in order to generate alpa in bull, bear, and sideways markets Generate ideas consistently on both sides of the portfolio Implement Python source code to engineer a statistically robust trading edge Develop superior risk management habits Build a long/short product that investors will find appealing Who this book is for This is a book by a practitioner for practitioners. It is designed to benefit a wide range of people, including long/short market participants, quantitative participants, proprietary traders, commodity trading advisors, retail investors (pro retailers, students, and retail quants), and long-only investors. At least 2 years of active trading experience, intermediate-level experience of the Python programming language, and basic mathematical literacy (basic statistics and algebra) are expected.
Fixed Income Securities And Derivatives Handbook
DOWNLOAD
Author : Moorad Choudhry
language : en
Publisher: John Wiley & Sons
Release Date : 2010-08-02
Fixed Income Securities And Derivatives Handbook written by Moorad Choudhry and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-08-02 with Business & Economics categories.
The definitive guide to fixed-come securities-revised to reflect today's dynamic financial environment The Second Edition of the Fixed-Income Securities and Derivatives Handbook offers a completely updated and revised look at an important area of today's financial world. In addition to providing an accessible description of the main elements of the debt market, concentrating on the instruments used and their applications, this edition takes into account the effect of the recent financial crisis on fixed income securities and derivatives. As timely as it is timeless, the Second Edition of the Fixed-Income Securities and Derivatives Handbook includes a wealth of new material on such topics as covered and convertible bonds, swaps, synthetic securitization, and bond portfolio management, as well as discussions regarding new regulatory twists and the evolving derivatives market. Offers a more detailed look at the basic principles of securitization and an updated chapter on collateralized debt obligations Covers bond mathematics, pricing and yield analytics, and term structure models Includes a new chapter on credit analysis and the different metrics used to measure bond-relative value Contains illustrative case studies and real-world examples of the topics touched upon throughout the book Written in a straightforward and accessible style, Moorad Choudhry's new book offers the ideal mix of practical tips and academic theory within this important field.
Financial Modelling In Python
DOWNLOAD
Author : Shayne Fletcher
language : en
Publisher: John Wiley & Sons
Release Date : 2010-10-28
Financial Modelling In Python written by Shayne Fletcher and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-28 with Business & Economics categories.
"Fletcher and Gardner have created a comprehensive resource that will be of interest not only to those working in the field of finance, but also to those using numerical methods in other fields such as engineering, physics, and actuarial mathematics. By showing how to combine the high-level elegance, accessibility, and flexibility of Python, with the low-level computational efficiency of C++, in the context of interesting financial modeling problems, they have provided an implementation template which will be useful to others seeking to jointly optimize the use of computational and human resources. They document all the necessary technical details required in order to make external numerical libraries available from within Python, and they contribute a useful library of their own, which will significantly reduce the start-up costs involved in building financial models. This book is a must read for all those with a need to apply numerical methods in the valuation of financial claims." –David Louton, Professor of Finance, Bryant University This book is directed at both industry practitioners and students interested in designing a pricing and risk management framework for financial derivatives using the Python programming language. It is a practical book complete with working, tested code that guides the reader through the process of building a flexible, extensible pricing framework in Python. The pricing frameworks' loosely coupled fundamental components have been designed to facilitate the quick development of new models. Concrete applications to real-world pricing problems are also provided. Topics are introduced gradually, each building on the last. They include basic mathematical algorithms, common algorithms from numerical analysis, trade, market and event data model representations, lattice and simulation based pricing, and model development. The mathematics presented is kept simple and to the point. The book also provides a host of information on practical technical topics such as C++/Python hybrid development (embedding and extending) and techniques for integrating Python based programs with Microsoft Excel.