[PDF] Designing Machine Learning Systems - eBooks Review

Designing Machine Learning Systems


Designing Machine Learning Systems
DOWNLOAD

Download Designing Machine Learning Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Designing Machine Learning Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Designing Machine Learning Systems


Designing Machine Learning Systems
DOWNLOAD
Author : Chip Huyen
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-05-17

Designing Machine Learning Systems written by Chip Huyen and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-17 with Computers categories.


Machine learning systems are both complex and unique. Complex because they consist of many different components and involve many different stakeholders. Unique because they're data dependent, with data varying wildly from one use case to the next. In this book, you'll learn a holistic approach to designing ML systems that are reliable, scalable, maintainable, and adaptive to changing environments and business requirements. Author Chip Huyen, co-founder of Claypot AI, considers each design decision--such as how to process and create training data, which features to use, how often to retrain models, and what to monitor--in the context of how it can help your system as a whole achieve its objectives. The iterative framework in this book uses actual case studies backed by ample references. This book will help you tackle scenarios such as: Engineering data and choosing the right metrics to solve a business problem Automating the process for continually developing, evaluating, deploying, and updating models Developing a monitoring system to quickly detect and address issues your models might encounter in production Architecting an ML platform that serves across use cases Developing responsible ML systems



Machine Learning Systems


Machine Learning Systems
DOWNLOAD
Author : Jeffrey Smith
language : en
Publisher: Simon and Schuster
Release Date : 2018-05-21

Machine Learning Systems written by Jeffrey Smith and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-21 with Computers categories.


Summary Machine Learning Systems: Designs that scale is an example-rich guide that teaches you how to implement reactive design solutions in your machine learning systems to make them as reliable as a well-built web app. Foreword by Sean Owen, Director of Data Science, Cloudera Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology If you’re building machine learning models to be used on a small scale, you don't need this book. But if you're a developer building a production-grade ML application that needs quick response times, reliability, and good user experience, this is the book for you. It collects principles and practices of machine learning systems that are dramatically easier to run and maintain, and that are reliably better for users. About the Book Machine Learning Systems: Designs that scale teaches you to design and implement production-ready ML systems. You'll learn the principles of reactive design as you build pipelines with Spark, create highly scalable services with Akka, and use powerful machine learning libraries like MLib on massive datasets. The examples use the Scala language, but the same ideas and tools work in Java, as well. What's Inside Working with Spark, MLlib, and Akka Reactive design patterns Monitoring and maintaining a large-scale system Futures, actors, and supervision About the Reader Readers need intermediate skills in Java or Scala. No prior machine learning experience is assumed. About the Author Jeff Smith builds powerful machine learning systems. For the past decade, he has been working on building data science applications, teams, and companies as part of various teams in New York, San Francisco, and Hong Kong. He blogs (https: //medium.com/@jeffksmithjr), tweets (@jeffksmithjr), and speaks (www.jeffsmith.tech/speaking) about various aspects of building real-world machine learning systems. Table of Contents PART 1 - FUNDAMENTALS OF REACTIVE MACHINE LEARNING Learning reactive machine learning Using reactive tools PART 2 - BUILDING A REACTIVE MACHINE LEARNING SYSTEM Collecting data Generating features Learning models Evaluating models Publishing models Responding PART 3 - OPERATING A MACHINE LEARNING SYSTEM Delivering Evolving intelligence



Designing Machine Learning Systems With Python


Designing Machine Learning Systems With Python
DOWNLOAD
Author : David Julian
language : en
Publisher:
Release Date : 2016-04-04

Designing Machine Learning Systems With Python written by David Julian and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-04 with Computers categories.


Design efficient machine learning systems that give you more accurate resultsAbout This Book- Gain an understanding of the machine learning design process- Optimize machine learning systems for improved accuracy- Understand common programming tools and techniques for machine learning- Develop techniques and strategies for dealing with large amounts of data from a variety of sources- Build models to solve unique tasksWho This Book Is ForThis book is for data scientists, scientists, or just the curious. To get the most out of this book, you will need to know some linear algebra and some Python, and have a basic knowledge of machine learning concepts.What You Will Learn- Gain an understanding of the machine learning design process- Optimize the error function of your machine learning system- Understand the common programming patterns used in machine learning- Discover optimizing techniques that will help you get the most from your data- Find out how to design models uniquely suited to your taskIn DetailMachine learning is one of the fastest growing trends in modern computing. It has applications in a wide range of fields, including economics, the natural sciences, web development, and business modeling. In order to harness the power of these systems, it is essential that the practitioner develops a solid understanding of the underlying design principles.There are many reasons why machine learning models may not give accurate results. By looking at these systems from a design perspective, we gain a deeper understanding of the underlying algorithms and the optimisational methods that are available. This book will give you a solid foundation in the machine learning design process, and enable you to build customised machine learning models to solve unique problems. You may already know about, or have worked with, some of the off-the-shelf machine learning models for solving common problems such as spam detection or movie classification, but to begin solving more complex problems, it is important to adapt these models to your own specific needs. This book will give you this understanding and more.Style and approachThis easy-to-follow, step-by-step guide covers the most important machine learning models and techniques from a design perspective.



Machine Learning Design Patterns


Machine Learning Design Patterns
DOWNLOAD
Author : Valliappa Lakshmanan
language : en
Publisher: O'Reilly Media
Release Date : 2020-10-15

Machine Learning Design Patterns written by Valliappa Lakshmanan and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-15 with Computers categories.


The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure models are treating users fairly



Building Intelligent Systems


Building Intelligent Systems
DOWNLOAD
Author : Geoff Hulten
language : en
Publisher: Apress
Release Date : 2018-03-06

Building Intelligent Systems written by Geoff Hulten and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-06 with Computers categories.


Produce a fully functioning Intelligent System that leverages machine learning and data from user interactions to improve over time and achieve success. This book teaches you how to build an Intelligent System from end to end and leverage machine learning in practice. You will understand how to apply your existing skills in software engineering, data science, machine learning, management, and program management to produce working systems. Building Intelligent Systems is based on more than a decade of experience building Internet-scale Intelligent Systems that have hundreds of millions of user interactions per day in some of the largest and most important software systems in the world. What You’ll Learn Understand the concept of an Intelligent System: What it is good for, when you need one, and how to set it up for success Design an intelligent user experience: Produce data to help make the Intelligent System better over time Implement an Intelligent System: Execute, manage, and measure Intelligent Systems in practice Create intelligence: Use different approaches, including machine learning Orchestrate an Intelligent System: Bring the parts together throughout its life cycle and achieve the impact you want Who This Book Is For Software engineers, machine learning practitioners, and technical managers who want to build effective intelligent systems



Building Machine Learning Systems With Python


Building Machine Learning Systems With Python
DOWNLOAD
Author : Willi Richert
language : en
Publisher: Packt Publishing Ltd
Release Date : 2013-01-01

Building Machine Learning Systems With Python written by Willi Richert and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-01 with Computers categories.


This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro.



Automated Design Of Machine Learning And Search Algorithms


Automated Design Of Machine Learning And Search Algorithms
DOWNLOAD
Author : Nelishia Pillay
language : en
Publisher: Springer Nature
Release Date : 2021-07-28

Automated Design Of Machine Learning And Search Algorithms written by Nelishia Pillay and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-28 with Computers categories.


This book presents recent advances in automated machine learning (AutoML) and automated algorithm design and indicates the future directions in this fast-developing area. Methods have been developed to automate the design of neural networks, heuristics and metaheuristics using techniques such as metaheuristics, statistical techniques, machine learning and hyper-heuristics. The book first defines the field of automated design, distinguishing it from the similar but different topics of automated algorithm configuration and automated algorithm selection. The chapters report on the current state of the art by experts in the field and include reviews of AutoML and automated design of search, theoretical analyses of automated algorithm design, automated design of control software for robot swarms, and overfitting as a benchmark and design tool. Also covered are automated generation of constructive and perturbative low-level heuristics, selection hyper-heuristics for automated design, automated design of deep-learning approaches using hyper-heuristics, genetic programming hyper-heuristics with transfer knowledge and automated design of classification algorithms. The book concludes by examining future research directions of this rapidly evolving field. The information presented here will especially interest researchers and practitioners in the fields of artificial intelligence, computational intelligence, evolutionary computation and optimisation.



Machine Learning Proceedings 1991


Machine Learning Proceedings 1991
DOWNLOAD
Author : Lawrence A. Birnbaum
language : en
Publisher: Morgan Kaufmann
Release Date : 2014-06-28

Machine Learning Proceedings 1991 written by Lawrence A. Birnbaum and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-28 with Computers categories.


Machine Learning



Designing Autonomous Ai


Designing Autonomous Ai
DOWNLOAD
Author : Kence Anderson
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-06-14

Designing Autonomous Ai written by Kence Anderson and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-14 with Computers categories.


Early rules-based artificial intelligence demonstrated intriguing decision-making capabilities but lacked perception and didn't learn. AI today, primed with machine learning perception and deep reinforcement learning capabilities, can perform superhuman decision-making for specific tasks. This book shows you how to combine the practicality of early AI with deep learning capabilities and industrial control technologies to make robust decisions in the real world. Using concrete examples, minimal theory, and a proven architectural framework, author Kence Anderson demonstrates how to teach autonomous AI explicit skills and strategies. You'll learn when and how to use and combine various AI architecture design patterns, as well as how to design advanced AI without needing to manipulate neural networks or machine learning algorithms. Students, process operators, data scientists, machine learning algorithm experts, and engineers who own and manage industrial processes can use the methodology in this book to design autonomous AI. This book examines: Differences between and limitations of automated, autonomous, and human decision-making Unique advantages of autonomous AI for real-time decision-making, with use cases How to design an autonomous AI from modular components and document your designs



Deep In Memory Architectures For Machine Learning


Deep In Memory Architectures For Machine Learning
DOWNLOAD
Author : Mingu Kang
language : en
Publisher: Springer Nature
Release Date : 2020-01-30

Deep In Memory Architectures For Machine Learning written by Mingu Kang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-30 with Technology & Engineering categories.


This book describes the recent innovation of deep in-memory architectures for realizing AI systems that operate at the edge of energy-latency-accuracy trade-offs. From first principles to lab prototypes, this book provides a comprehensive view of this emerging topic for both the practicing engineer in industry and the researcher in academia. The book is a journey into the exciting world of AI systems in hardware.