Detecting Regime Change In Computational Finance

DOWNLOAD
Download Detecting Regime Change In Computational Finance PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Detecting Regime Change In Computational Finance book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Detecting Regime Change In Computational Finance
DOWNLOAD
Author : Jun Chen
language : en
Publisher: CRC Press
Release Date : 2020-09-14
Detecting Regime Change In Computational Finance written by Jun Chen and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-14 with Business & Economics categories.
Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithms It will be of great interest to researchers in computational finance, machine learning and data science. About the Authors Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019. Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.
Detecting Regime Change In Computational Finance
DOWNLOAD
Author : Jun Chen
language : en
Publisher: CRC Press
Release Date : 2020-09-14
Detecting Regime Change In Computational Finance written by Jun Chen and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-14 with Computers categories.
Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithms It will be of great interest to researchers in computational finance, machine learning and data science. About the Authors Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019. Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.
Genetic Algorithms And Genetic Programming In Computational Finance
DOWNLOAD
Author : Shu-Heng Chen
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Genetic Algorithms And Genetic Programming In Computational Finance written by Shu-Heng Chen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Business & Economics categories.
After a decade of development, genetic algorithms and genetic programming have become a widely accepted toolkit for computational finance. Genetic Algorithms and Genetic Programming in Computational Finance is a pioneering volume devoted entirely to a systematic and comprehensive review of this subject. Chapters cover various areas of computational finance, including financial forecasting, trading strategies development, cash flow management, option pricing, portfolio management, volatility modeling, arbitraging, and agent-based simulations of artificial stock markets. Two tutorial chapters are also included to help readers quickly grasp the essence of these tools. Finally, a menu-driven software program, Simple GP, accompanies the volume, which will enable readers without a strong programming background to gain hands-on experience in dealing with much of the technical material introduced in this work.
Ai For Finance
DOWNLOAD
Author : Edward P. K. Tsang
language : en
Publisher: CRC Press
Release Date : 2023-06-02
Ai For Finance written by Edward P. K. Tsang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-02 with Computers categories.
Finance students and practitioners may ask: can machines learn everything? Could AI help me? Computing students or practitioners may ask: which of my skills could contribute to finance? Where in finance should I pay attention? This book aims to answer these questions. No prior knowledge is expected in AI or finance. Including original research, the book explains the impact of ignoring computation in classical economics; examines the relationship between computing and finance and points out potential misunderstandings between economists and computer scientists; and introduces Directional Change and explains how this can be used. To finance students and practitioners, this book will explain the promise of AI, as well as its limitations. It will cover knowledge representation, modelling, simulation and machine learning, explaining the principles of how they work. To computing students and practitioners, this book will introduce the financial applications in which AI has made an impact. This includes algorithmic trading, forecasting, risk analysis portfolio optimization and other less well-known areas in finance. Trading depth for readability, AI for Finance will help readers decide whether to invest more time into the subject.
Generative Ai For Web Engineering Models
DOWNLOAD
Author : Shah, Imdad Ali
language : en
Publisher: IGI Global
Release Date : 2024-10-22
Generative Ai For Web Engineering Models written by Shah, Imdad Ali and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-22 with Computers categories.
Web engineering faces a pressing challenge in keeping pace with the rapidly evolving digital landscape. Developing, designing, testing, and maintaining web-based systems and applications require innovative approaches to meet the growing demands of users and businesses. Generative Artificial Intelligence (AI) emerges as a transformative solution, offering advanced capabilities to enhance web engineering models and methodologies. This book presents a timely exploration of how Generative AI can revolutionize the web engineering discipline, providing insights into future challenges and societal impacts. Generative AI for Web Engineering Models offers a comprehensive examination of integrating AI-driven generative approaches into web engineering practices. It delves into methodologies, models, and the transformative impact of Generative AI on web-based systems and applications. By addressing topics such as web browser technologies, website scalability, security, and the integration of Machine Learning, this book provides a roadmap for researchers, scientists, postgraduate students, and AI enthusiasts interested in the intersection of AI and web engineering.
Applications Of Computational Intelligence In Data Driven Trading
DOWNLOAD
Author : Cris Doloc
language : en
Publisher: John Wiley & Sons
Release Date : 2019-11-05
Applications Of Computational Intelligence In Data Driven Trading written by Cris Doloc and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-05 with Business & Economics categories.
“Life on earth is filled with many mysteries, but perhaps the most challenging of these is the nature of Intelligence.” – Prof. Terrence J. Sejnowski, Computational Neurobiologist The main objective of this book is to create awareness about both the promises and the formidable challenges that the era of Data-Driven Decision-Making and Machine Learning are confronted with, and especially about how these new developments may influence the future of the financial industry. The subject of Financial Machine Learning has attracted a lot of interest recently, specifically because it represents one of the most challenging problem spaces for the applicability of Machine Learning. The author has used a novel approach to introduce the reader to this topic: The first half of the book is a readable and coherent introduction to two modern topics that are not generally considered together: the data-driven paradigm and Computational Intelligence. The second half of the book illustrates a set of Case Studies that are contemporarily relevant to quantitative trading practitioners who are dealing with problems such as trade execution optimization, price dynamics forecast, portfolio management, market making, derivatives valuation, risk, and compliance. The main purpose of this book is pedagogical in nature, and it is specifically aimed at defining an adequate level of engineering and scientific clarity when it comes to the usage of the term “Artificial Intelligence,” especially as it relates to the financial industry. The message conveyed by this book is one of confidence in the possibilities offered by this new era of Data-Intensive Computation. This message is not grounded on the current hype surrounding the latest technologies, but on a deep analysis of their effectiveness and also on the author’s two decades of professional experience as a technologist, quant and academic.
Advances In Financial Machine Learning
DOWNLOAD
Author : Marcos Lopez de Prado
language : en
Publisher: John Wiley & Sons
Release Date : 2018-02-21
Advances In Financial Machine Learning written by Marcos Lopez de Prado and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-21 with Business & Economics categories.
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
High Frequency Trading And Limit Order Book Dynamics
DOWNLOAD
Author : Ingmar Nolte
language : en
Publisher: Routledge
Release Date : 2016-04-14
High Frequency Trading And Limit Order Book Dynamics written by Ingmar Nolte and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-14 with Business & Economics categories.
This book brings together the latest research in the areas of market microstructure and high-frequency finance along with new econometric methods to address critical practical issues in these areas of research. Thirteen chapters, each of which makes a valuable and significant contribution to the existing literature have been brought together, spanning a wide range of topics including information asymmetry and the information content in limit order books, high-frequency return distribution models, multivariate volatility forecasting, analysis of individual trading behaviour, the analysis of liquidity, price discovery across markets, market microstructure models and the information content of order flow. These issues are central both to the rapidly expanding practice of high frequency trading in financial markets and to the further development of the academic literature in this area. The volume will therefore be of immediate interest to practitioners and academics. This book was originally published as a special issue of European Journal of Finance.
Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes
DOWNLOAD
Author : Cheng Few Lee
language : en
Publisher: World Scientific
Release Date : 2020-07-30
Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes written by Cheng Few Lee and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-30 with Business & Economics categories.
This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.
Empirical Asset Pricing
DOWNLOAD
Author : Wayne Ferson
language : en
Publisher: MIT Press
Release Date : 2019-03-12
Empirical Asset Pricing written by Wayne Ferson and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-12 with Business & Economics categories.
An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.