[PDF] Devops For Data Science - eBooks Review

Devops For Data Science


Devops For Data Science
DOWNLOAD

Download Devops For Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Devops For Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Devops For Data Science


Devops For Data Science
DOWNLOAD
Author : Alex Gold
language : en
Publisher: CRC Press
Release Date : 2024-06-19

Devops For Data Science written by Alex Gold and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-19 with Business & Economics categories.


Data Scientists are experts at analyzing, modelling and visualizing data but, at one point or another, have all encountered difficulties in collaborating with or delivering their work to the people and systems that matter. Born out of the agile software movement, DevOps is a set of practices, principles and tools that help software engineers reliably deploy work to production. This book takes the lessons of DevOps and aplies them to creating and delivering production-grade data science projects in Python and R. This book’s first section explores how to build data science projects that deploy to production with no frills or fuss. Its second section covers the rudiments of administering a server, including Linux, application, and network administration before concluding with a demystification of the concerns of enterprise IT/Administration in its final section, making it possible for data scientists to communicate and collaborate with their organization’s security, networking, and administration teams. Key Features: • Start-to-finish labs take readers through creating projects that meet DevOps best practices and creating a server-based environment to work on and deploy them. • Provides an appendix of cheatsheets so that readers will never be without the reference they need to remember a Git, Docker, or Command Line command. • Distills what a data scientist needs to know about Docker, APIs, CI/CD, Linux, DNS, SSL, HTTP, Auth, and more. • Written specifically to address the concern of a data scientist who wants to take their Python or R work to production. There are countless books on creating data science work that is correct. This book, on the otherhand, aims to go beyond this, targeted at data scientists who want their work to be than merely accurate and deliver work that matters.



Devops For Data Science


Devops For Data Science
DOWNLOAD
Author : Alex K. Gold
language : en
Publisher:
Release Date : 2024

Devops For Data Science written by Alex K. Gold and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024 with Computer software categories.


"Data Scientists are experts at analyzing, modelling and visualizing data but, at one point or another, have all encountered difficulties in collaborating with or delivering their work to the people and systems that matter. Born out of the agile software movement, DevOps is a set of practices, principles and tools that help software engineers reliably deploy work to production. This book takes the lessons of DevOps and aplies them to creating and delivering production-grade data science projects in Python and R. This book's first section explores how to build data science projects that deploy to production with no frills or fuss. Its second section covers the rudiments of administering a server, including Linux, application, and network administration before concluding with a demystification of the concerns of enterprise IT/Administration in its final section, making it possible for data scientists to communicate and collaborate with their organization's security, networking, and administration teams. Key Features: Start-to-finish labs take readers through creating projects that meet DevOps best practices and creating a server-based environment to work on and deploy them. Provides an appendix of cheatsheets so that readers will never be without the reference they need to remember a Git, Docker, or Command Line command. Distills what a data scientist needs to know about Docker, APIs, CI/CD, Linux, DNS, SSL, HTTP, Auth, and more. Written specifically to address the concern of a data scientist who wants to take their Python or R work to production. There are countless books on creating data science work that is correct. This book, on the otherhand, aims to go beyond this, targeted at data scientists who want their work to be than merely accurate and deliver work that matters"--



Python For Devops


Python For Devops
DOWNLOAD
Author : Noah Gift
language : en
Publisher: O'Reilly Media
Release Date : 2019-12-12

Python For Devops written by Noah Gift and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-12 with Computers categories.


Much has changed in technology over the past decade. Data is hot, the cloud is ubiquitous, and many organizations need some form of automation. Throughout these transformations, Python has become one of the most popular languages in the world. This practical resource shows you how to use Python for everyday Linux systems administration tasks with today’s most useful DevOps tools, including Docker, Kubernetes, and Terraform. Learning how to interact and automate with Linux is essential for millions of professionals. Python makes it much easier. With this book, you’ll learn how to develop software and solve problems using containers, as well as how to monitor, instrument, load-test, and operationalize your software. Looking for effective ways to "get stuff done" in Python? This is your guide. Python foundations, including a brief introduction to the language How to automate text, write command-line tools, and automate the filesystem Linux utilities, package management, build systems, monitoring and instrumentation, and automated testing Cloud computing, infrastructure as code, Kubernetes, and serverless Machine learning operations and data engineering from a DevOps perspective Building, deploying, and operationalizing a machine learning project



Data Science Bookcamp


Data Science Bookcamp
DOWNLOAD
Author : Leonard Apeltsin
language : en
Publisher: Simon and Schuster
Release Date : 2021-12-07

Data Science Bookcamp written by Leonard Apeltsin and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-07 with Computers categories.


Learn data science with Python by building five real-world projects! Experiment with card game predictions, tracking disease outbreaks, and more, as you build a flexible and intuitive understanding of data science. In Data Science Bookcamp you will learn: - Techniques for computing and plotting probabilities - Statistical analysis using Scipy - How to organize datasets with clustering algorithms - How to visualize complex multi-variable datasets - How to train a decision tree machine learning algorithm In Data Science Bookcamp you’ll test and build your knowledge of Python with the kind of open-ended problems that professional data scientists work on every day. Downloadable data sets and thoroughly-explained solutions help you lock in what you’ve learned, building your confidence and making you ready for an exciting new data science career. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology A data science project has a lot of moving parts, and it takes practice and skill to get all the code, algorithms, datasets, formats, and visualizations working together harmoniously. This unique book guides you through five realistic projects, including tracking disease outbreaks from news headlines, analyzing social networks, and finding relevant patterns in ad click data. About the book Data Science Bookcamp doesn’t stop with surface-level theory and toy examples. As you work through each project, you’ll learn how to troubleshoot common problems like missing data, messy data, and algorithms that don’t quite fit the model you’re building. You’ll appreciate the detailed setup instructions and the fully explained solutions that highlight common failure points. In the end, you’ll be confident in your skills because you can see the results. What's inside - Web scraping - Organize datasets with clustering algorithms - Visualize complex multi-variable datasets - Train a decision tree machine learning algorithm About the reader For readers who know the basics of Python. No prior data science or machine learning skills required. About the author Leonard Apeltsin is the Head of Data Science at Anomaly, where his team applies advanced analytics to uncover healthcare fraud, waste, and abuse. Table of Contents CASE STUDY 1 FINDING THE WINNING STRATEGY IN A CARD GAME 1 Computing probabilities using Python 2 Plotting probabilities using Matplotlib 3 Running random simulations in NumPy 4 Case study 1 solution CASE STUDY 2 ASSESSING ONLINE AD CLICKS FOR SIGNIFICANCE 5 Basic probability and statistical analysis using SciPy 6 Making predictions using the central limit theorem and SciPy 7 Statistical hypothesis testing 8 Analyzing tables using Pandas 9 Case study 2 solution CASE STUDY 3 TRACKING DISEASE OUTBREAKS USING NEWS HEADLINES 10 Clustering data into groups 11 Geographic location visualization and analysis 12 Case study 3 solution CASE STUDY 4 USING ONLINE JOB POSTINGS TO IMPROVE YOUR DATA SCIENCE RESUME 13 Measuring text similarities 14 Dimension reduction of matrix data 15 NLP analysis of large text datasets 16 Extracting text from web pages 17 Case study 4 solution CASE STUDY 5 PREDICTING FUTURE FRIENDSHIPS FROM SOCIAL NETWORK DATA 18 An introduction to graph theory and network analysis 19 Dynamic graph theory techniques for node ranking and social network analysis 20 Network-driven supervised machine learning 21 Training linear classifiers with logistic regression 22 Training nonlinear classifiers with decision tree techniques 23 Case study 5 solution



The Devops Handbook


The Devops Handbook
DOWNLOAD
Author : Gene Kim
language : en
Publisher: IT Revolution
Release Date : 2016-10-06

The Devops Handbook written by Gene Kim and has been published by IT Revolution this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-06 with Business & Economics categories.


Increase profitability, elevate work culture, and exceed productivity goals through DevOps practices. More than ever, the effective management of technology is critical for business competitiveness. For decades, technology leaders have struggled to balance agility, reliability, and security. The consequences of failure have never been greater—whether it's the healthcare.gov debacle, cardholder data breaches, or missing the boat with Big Data in the cloud. And yet, high performers using DevOps principles, such as Google, Amazon, Facebook, Etsy, and Netflix, are routinely and reliably deploying code into production hundreds, or even thousands, of times per day. Following in the footsteps of The Phoenix Project, The DevOps Handbook shows leaders how to replicate these incredible outcomes, by showing how to integrate Product Management, Development, QA, IT Operations, and Information Security to elevate your company and win in the marketplace.



Data Science On Aws


Data Science On Aws
DOWNLOAD
Author : Chris Fregly
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-04-07

Data Science On Aws written by Chris Fregly and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-07 with Computers categories.


With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level up your skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more



Effective Data Science Infrastructure


Effective Data Science Infrastructure
DOWNLOAD
Author : Ville Tuulos
language : en
Publisher: Simon and Schuster
Release Date : 2022-08-16

Effective Data Science Infrastructure written by Ville Tuulos and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-16 with Computers categories.


Effective Data Science Infrastructure teaches you to build data pipelines and project workflows that will supercharge data scientists and their projects. Based on state-of-the-art tools and concepts that power data operations of Netflix, this book introduces a customizable cloud-based approach to model development and MLOps that you can easily adapt to your company's specific needs. As you roll out these practical processes, your teams will produce better and faster results when applying data science and machine learning to a wide array of business problems.



Data Science For Business Professionals


Data Science For Business Professionals
DOWNLOAD
Author : Probyto Data Science and Consulting Pvt. Ltd.
language : en
Publisher: BPB Publications
Release Date : 2020-05-06

Data Science For Business Professionals written by Probyto Data Science and Consulting Pvt. Ltd. and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-06 with Computers categories.


Primer into the multidisciplinary world of Data Science KEY FEATURESÊÊ - Explore and use the key concepts of Statistics required to solve data science problems - Use Docker, Jenkins, and Git for Continuous Development and Continuous Integration of your web app - Learn how to build Data Science solutions with GCP and AWS DESCRIPTIONÊ The book will initially explain the What-Why of Data Science and the process of solving a Data Science problem. The fundamental concepts of Data Science, such as Statistics, Machine Learning, Business Intelligence, Data pipeline, and Cloud Computing, will also be discussed. All the topics will be explained with an example problem and will show how the industry approaches to solve such a problem. The book will pose questions to the learners to solve the problems and build the problem-solving aptitude and effectively learn. The book uses Mathematics wherever necessary and will show you how it is implemented using Python with the help of an example dataset.Ê WHAT WILL YOU LEARNÊÊ - Understand the multi-disciplinary nature of Data Science - Get familiar with the key concepts in Mathematics and Statistics - Explore a few key ML algorithms and their use cases - Learn how to implement the basics of Data Pipelines - Get an overview of Cloud Computing & DevOps - Learn how to create visualizations using Tableau WHO THIS BOOK IS FORÊ This book is ideal for Data Science enthusiasts who want to explore various aspects of Data Science. Useful for Academicians, Business owners, and Researchers for a quick reference on industrial practices in Data Science.Ê TABLE OF CONTENTS 1. Data Science in Practice 2. Mathematics Essentials 3. Statistics Essentials 4. Exploratory Data Analysis 5. Data preprocessing 6. Feature Engineering 7. Machine learning algorithms 8. Productionizing ML models 9. Data Flows in Enterprises 10. Introduction to Databases 11. Introduction to Big Data 12. DevOps for Data Science 13. Introduction to Cloud Computing 14. Deploy Model to Cloud 15. Introduction to Business IntelligenceÊ 16. Data Visualization Tools 17. Industry Use Case 1 Ð FormAssist 18. Industry Use Case 2 Ð PeopleReporter 19. Data Science Learning Resources 20. Do It Your Self Challenges 21. MCQs for Assessments



Big Data Infrastructure Technologies For Data Analytics


Big Data Infrastructure Technologies For Data Analytics
DOWNLOAD
Author : Yuri Demchenko
language : en
Publisher: Springer Nature
Release Date : 2024-10-25

Big Data Infrastructure Technologies For Data Analytics written by Yuri Demchenko and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-25 with Computers categories.


This book provides a comprehensive overview and introduction to Big Data Infrastructure technologies, existing cloud-based platforms, and tools for Big Data processing and data analytics, combining both a conceptual approach in architecture design and a practical approach in technology selection and project implementation. Readers will learn the core functionality of major Big Data Infrastructure components and how they integrate to form a coherent solution with business benefits. Specific attention will be given to understanding and using the major Big Data platform Apache Hadoop ecosystem, its main functional components MapReduce, HBase, Hive, Pig, Spark and streaming analytics. The book includes topics related to enterprise and research data management and governance and explains modern approaches to cloud and Big Data security and compliance. The book covers two knowledge areas defined in the EDISON Data Science Framework (EDSF): Data Science Engineering and Data Management and Governance and can be used as a textbook for university courses or provide a basis for practitioners for further self-study and practical use of Big Data technologies and competent evaluation and implementation of practical projects in their organizations.



Devops For Developers


Devops For Developers
DOWNLOAD
Author : Michael Hüttermann
language : en
Publisher: Apress
Release Date : 2012-10-24

Devops For Developers written by Michael Hüttermann and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-24 with Computers categories.


DevOps for Developers delivers a practical, thorough introduction to approaches, processes and tools to foster collaboration between software development and operations. Efforts of Agile software development often end at the transition phase from development to operations. This book covers the delivery of software, this means “the last mile”, with lean practices for shipping the software to production and making it available to the end users, together with the integration of operations with earlier project phases (elaboration, construction, transition). DevOps for Developers describes how to streamline the software delivery process and improve the cycle time (that is the time from inception to delivery). It will enable you to deliver software faster, in better quality and more aligned with individual requirements and basic conditions. And above all, work that is aligned with the “DevOps” approach makes even more fun! Provides patterns and toolchains to integrate software development and operations Delivers an one-stop shop for kick-starting with DevOps Provides guidance how to streamline the software delivery process