[PDF] Difference Equations Second Edition - eBooks Review

Difference Equations Second Edition


Difference Equations Second Edition
DOWNLOAD

Download Difference Equations Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Difference Equations Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



An Introduction To Difference Equations


An Introduction To Difference Equations
DOWNLOAD
Author : Saber N. Elaydi
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14

An Introduction To Difference Equations written by Saber N. Elaydi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.


The second edition has greatly benefited from a sizable number of comments and suggestions I received from users of the book. I hope that I have corrected all the er rors and misprints in the book. Important revisions were made in Chapters I and 4. In Chapter I, we added two appendices (global stability and periodic solutions). In Chapter 4, we added a section on applications to mathematical biology. Influenced by a friendly and some not so friendly comments about Chapter 8 (previously Chapter 7: Asymptotic Behavior of Difference Equations), I rewrote the chapter with additional material on Birkhoff's theory. Also, due to popular demand, a new chapter (Chapter 9) under the title "Applications to Continued Fractions and Orthogonal Polynomials" has been added. This chapter gives a rather thorough presentation of continued fractions and orthogonal polynomials and their intimate connection to second-order difference equations. Chapter 8 (Oscillation Theory) has now become Chapter 7. Accordingly, the new revised suggestions for using the text are as follows. The diagram on p. viii shows the interdependence of the chapters The book may be used with considerable flexibility. For a one-semester course, one may choose one of the following options: (i) If you want a course that emphasizes stability and control, then you may select Chapters I, 2, 3, and parts of 4, 5, and 6. This is perhaps appropriate for a class populated by mathematics, physics, and engineering majors.



Difference Equations


Difference Equations
DOWNLOAD
Author : Walter G. Kelley
language : en
Publisher: Academic Press
Release Date : 2001

Difference Equations written by Walter G. Kelley and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.


Difference Equations, Second Edition, presents a practical introduction to this important field of solutions for engineering and the physical sciences. Topic coverage includes numerical analysis, numerical methods, differential equations, combinatorics and discrete modeling. A hallmark of this revision is the diverse application to many subfields of mathematics. Phase plane analysis for systems of two linear equations Use of equations of variation to approximate solutions Fundamental matrices and Floquet theory for periodic systems LaSalle invariance theorem Additional applications: secant line method, Bison problem, juvenile-adult population model, probability theory Appendix on the use of Mathematica for analyzing difference equaitons Exponential generating functions Many new examples and exercises



Difference Equations Second Edition


Difference Equations Second Edition
DOWNLOAD
Author : R Mickens
language : en
Publisher: CRC Press
Release Date : 1991-01-01

Difference Equations Second Edition written by R Mickens and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991-01-01 with Mathematics categories.


In recent years, the study of difference equations has acquired a new significance, due in large part to their use in the formulation and analysis of discrete-time systems, the numerical integration of differential equations by finite-difference schemes, and the study of deterministic chaos. The second edition of Difference Equations: Theory and Applications provides a thorough listing of all major theorems along with proofs. The text treats the case of first-order difference equations in detail, using both analytical and geometrical methods. Both ordinary and partial difference equations are considered, along with a variety of special nonlinear forms for which exact solutions can be determined. Numerous worked examples and problems allow readers to fully understand the material in the text. They also give possible generalization of the theorems and application models. The text's expanded coverage of application helps readers appreciate the benefits of using difference equations in the modeling and analysis of "realistic" problems from a broad range of fields. The second edition presents, analyzes, and discusses a large number of applications from the mathematical, biological, physical, and social sciences. Discussions on perturbation methods and difference equation models of differential equation models of differential equations represent contributions by the author to the research literature. Reference to original literature show how the elementary models of the book can be extended to more realistic situations. Difference Equations, Second Edition gives readers a background in discrete mathematics that many workers in science-oriented industries need as part of their general scientific knowledge. With its minimal mathematical background requirements of general algebra and calculus, this unique volume will be used extensively by students and professional in science and technology, in areas such as applied mathematics, control theory, population science, economics, and electronic circuits, especially discrete signal processing.



Difference Equations Second Edition


Difference Equations Second Edition
DOWNLOAD
Author : Ronald E. Mickens
language : en
Publisher: CRC Press
Release Date : 2022-02-17

Difference Equations Second Edition written by Ronald E. Mickens and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-17 with Mathematics categories.


In recent years, the study of difference equations has acquired a new significance, due in large part to their use in the formulation and analysis of discrete-time systems, the numerical integration of differential equations by finite-difference schemes, and the study of deterministic chaos. The second edition of Difference Equations: Theory and Applications provides a thorough listing of all major theorems along with proofs. The text treats the case of first-order difference equations in detail, using both analytical and geometrical methods. Both ordinary and partial difference equations are considered, along with a variety of special nonlinear forms for which exact solutions can be determined. Numerous worked examples and problems allow readers to fully understand the material in the text. They also give possible generalization of the theorems and application models. The text's expanded coverage of application helps readers appreciate the benefits of using difference equations in the modeling and analysis of "realistic" problems from a broad range of fields. The second edition presents, analyzes, and discusses a large number of applications from the mathematical, biological, physical, and social sciences. Discussions on perturbation methods and difference equation models of differential equation models of differential equations represent contributions by the author to the research literature. Reference to original literature show how the elementary models of the book can be extended to more realistic situations. Difference Equations, Second Edition gives readers a background in discrete mathematics that many workers in science-oriented industries need as part of their general scientific knowledge. With its minimal mathematical background requirements of general algebra and calculus, this unique volume will be used extensively by students and professional in science and technology, in areas such as applied mathematics, control theory, population science, economics, and electronic circuits, especially discrete signal processing.



Difference Equations Second Edition


Difference Equations Second Edition
DOWNLOAD
Author : Ronald E. Mickens
language : en
Publisher: CRC Press
Release Date : 2022-02-17

Difference Equations Second Edition written by Ronald E. Mickens and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-17 with Mathematics categories.


In recent years, the study of difference equations has acquired a new significance, due in large part to their use in the formulation and analysis of discrete-time systems, the numerical integration of differential equations by finite-difference schemes, and the study of deterministic chaos. The second edition of Difference Equations: Theory and Applications provides a thorough listing of all major theorems along with proofs. The text treats the case of first-order difference equations in detail, using both analytical and geometrical methods. Both ordinary and partial difference equations are considered, along with a variety of special nonlinear forms for which exact solutions can be determined. Numerous worked examples and problems allow readers to fully understand the material in the text. They also give possible generalization of the theorems and application models. The text's expanded coverage of application helps readers appreciate the benefits of using difference equations in the modeling and analysis of "realistic" problems from a broad range of fields. The second edition presents, analyzes, and discusses a large number of applications from the mathematical, biological, physical, and social sciences. Discussions on perturbation methods and difference equation models of differential equation models of differential equations represent contributions by the author to the research literature. Reference to original literature show how the elementary models of the book can be extended to more realistic situations. Difference Equations, Second Edition gives readers a background in discrete mathematics that many workers in science-oriented industries need as part of their general scientific knowledge. With its minimal mathematical background requirements of general algebra and calculus, this unique volume will be used extensively by students and professional in science and technology, in areas such as applied mathematics, control theory, population science, economics, and electronic circuits, especially discrete signal processing.



Differential And Difference Equations


Differential And Difference Equations
DOWNLOAD
Author : Leonard C. Maximon
language : en
Publisher: Springer
Release Date : 2016-04-18

Differential And Difference Equations written by Leonard C. Maximon and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-18 with Science categories.


This book, intended for researchers and graduate students in physics, applied mathematics and engineering, presents a detailed comparison of the important methods of solution for linear differential and difference equations - variation of constants, reduction of order, Laplace transforms and generating functions - bringing out the similarities as well as the significant differences in the respective analyses. Equations of arbitrary order are studied, followed by a detailed analysis for equations of first and second order. Equations with polynomial coefficients are considered and explicit solutions for equations with linear coefficients are given, showing significant differences in the functional form of solutions of differential equations from those of difference equations. An alternative method of solution involving transformation of both the dependent and independent variables is given for both differential and difference equations. A comprehensive, detailed treatment of Green’s functions and the associated initial and boundary conditions is presented for differential and difference equations of both arbitrary and second order. A dictionary of difference equations with polynomial coefficients provides a unique compilation of second order difference equations obeyed by the special functions of mathematical physics. Appendices augmenting the text include, in particular, a proof of Cramer’s rule, a detailed consideration of the role of the superposition principal in the Green’s function, and a derivation of the inverse of Laplace transforms and generating functions of particular use in the solution of second order linear differential and difference equations with linear coefficients.



Numerical Methods For Ordinary Differential Equations


Numerical Methods For Ordinary Differential Equations
DOWNLOAD
Author : J. C. Butcher
language : en
Publisher: John Wiley & Sons
Release Date : 2004-08-20

Numerical Methods For Ordinary Differential Equations written by J. C. Butcher and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-08-20 with Mathematics categories.


This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. "This book is...an indispensible reference for any researcher."-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography.



Theory Of Functional Differential Equations


Theory Of Functional Differential Equations
DOWNLOAD
Author : Jack K. Hale
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Theory Of Functional Differential Equations written by Jack K. Hale and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Since the publication of my lecture notes, Functional Differential Equations in the Applied Mathematical Sciences series, many new developments have occurred. As a consequence, it was decided not to make a few corrections and additions for a second edition of those notes, but to present a more compre hensive theory. The present work attempts to consolidate those elements of the theory which have stabilized and also to include recent directions of research. The following chapters were not discussed in my original notes. Chapter 1 is an elementary presentation of linear differential difference equations with constant coefficients of retarded and neutral type. Chapter 4 develops the recent theory of dissipative systems. Chapter 9 is a new chapter on perturbed systems. Chapter 11 is a new presentation incorporating recent results on the existence of periodic solutions of autonomous equations. Chapter 12 is devoted entirely to neutral equations. Chapter 13 gives an introduction to the global and generic theory. There is also an appendix on the location of the zeros of characteristic polynomials. The remainder of the material has been completely revised and updated with the most significant changes occurring in Chapter 3 on the properties of solutions, Chapter 5 on stability, and Chapter lOon behavior near a periodic orbit.



Advanced Topics In Difference Equations


Advanced Topics In Difference Equations
DOWNLOAD
Author : R.P. Agarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17

Advanced Topics In Difference Equations written by R.P. Agarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.


. The theory of difference equations, the methods used in their solutions and their wide applications have advanced beyond their adolescent stage to occupy a central position in Applicable Analysis. In fact, in the last five years, the proliferation of the subject is witnessed by hundreds of research articles and several monographs, two International Conferences and numerous Special Sessions, and a new Journal as well as several special issues of existing journals, all devoted to the theme of Difference Equations. Now even those experts who believe in the universality of differential equations are discovering the sometimes striking divergence between the continuous and the discrete. There is no doubt that the theory of difference equations will continue to play an important role in mathematics as a whole. In 1992, the first author published a monograph on the subject entitled Difference Equations and Inequalities. This book was an in-depth survey of the field up to the year of publication. Since then, the subject has grown to such an extent that it is now quite impossible for a similar survey, even to cover just the results obtained in the last four years, to be written. In the present monograph, we have collected some of the results which we have obtained in the last few years, as well as some yet unpublished ones.



Second Order Differential Equations


Second Order Differential Equations
DOWNLOAD
Author : Gerhard Kristensson
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-08-05

Second Order Differential Equations written by Gerhard Kristensson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-08-05 with Mathematics categories.


Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusingon the systematic treatment and classification of these solutions. Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincaré-Perron theory, and the appendix also contains a new way of analyzing the asymptomatic behavior of solutions of differential equations. This textbook is appropriate for advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differntial Equations. A solutions manual is available online.