[PDF] Digital Pattern Recognition - eBooks Review

Digital Pattern Recognition


Digital Pattern Recognition
DOWNLOAD

Download Digital Pattern Recognition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Digital Pattern Recognition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Pattern Recognition And Image Preprocessing


Pattern Recognition And Image Preprocessing
DOWNLOAD
Author : Sing T. Bow
language : en
Publisher: CRC Press
Release Date : 2002-01-11

Pattern Recognition And Image Preprocessing written by Sing T. Bow and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-01-11 with Technology & Engineering categories.


Describing non-parametric and parametric theoretic classification and the training of discriminant functions, this second edition includes new and expanded sections on neural networks, Fisher's discriminant, wavelet transform, and the method of principal components. It contains discussions on dimensionality reduction and feature selection; novel computer system architectures; proven algorithms for solutions to common roadblocks in data processing; computing models including the Hamming net, the Kohonen self-organizing map, and the Hopfield net; detailed appendices with data sets illustrating key concepts in the text; and more.



Digital Image Processing And Pattern Recognition


Digital Image Processing And Pattern Recognition
DOWNLOAD
Author : Pakhira Malay K.
language : en
Publisher: PHI Learning Pvt. Ltd.
Release Date : 2011-02

Digital Image Processing And Pattern Recognition written by Pakhira Malay K. and has been published by PHI Learning Pvt. Ltd. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02 with Computers categories.


This book is designed for undergraduate and postgraduate students of Computer Science and Engineering, Information Technology, Electronics and Communication Engineering, and Electrical Engineering. The book comprehensively covers all the important topics in digital image processing and pattern recognition along with the fundamental concepts, mathematical preliminaries and theoretical derivations of significant theorems. The image processing topics include coverage of image formation, digitization, lower level processing, image analysis, image compression, and so on. The topics on pattern recognition include statistical decision making, decision tree learning, artificial neural networks, clustering and others. An application of simulated annealing for edge detection is described in an appendix. The book is profusely illustrated with more than 200 figures and sketches as an added feature. KEY FEATURES: Provides a large number of worked examples to strengthen the grasp of the concepts. Lays considerable emphasis on the algorithms in order to teach students how to write good practical programs for problem solving. Devotes a separate chapter to currently used image format standards. Offers problems at the end of each chapter to help students test their understanding of the fundamentals of the subject.



Digital Pattern Recognition


Digital Pattern Recognition
DOWNLOAD
Author : K. S. Fu
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-08

Digital Pattern Recognition written by K. S. Fu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-08 with Science categories.


During the past fifteen years there has been a considerable growth of interest in problems of pattern recognition. Contributions to the blossom of this area have come from many disciplines, including statistics, psychology, linguistics, computer science, biology, taxonomy, switching theory, communication theory, control theory, and operations research. Many different approaches have been proposed and a number of books have been published. Most books published so far deal with the decision-theoretic (or statistical) approach or the syntactic (or linguistic) approach. Since the area of pattern recognition is still far from its maturity, many new research results, both in theory and in applications, are continuously produced. The purpose of this monograph is to provide a concise summary of the major recent developments in pattern recognition. The five main chapters (Chapter 2-6) in this book can be divided into two parts. The first three chapters concern primarily with basic techniques in pattern recognition. They include statistical techniques, clustering analysis and syntactic techniques. The last two chapters deal with applications; namely, picture recognition, and speech recognition and understanding. Each chapter is written by one or two distinguished experts on that subject. The editor has not attempted to impose upon the contributors to this volume a uniform notation and terminol ogy, since such notation and terminology does not as yet exist in pattern recognition.



Digital Pattern Recognition


Digital Pattern Recognition
DOWNLOAD
Author : King-Sun Fu
language : en
Publisher:
Release Date : 1980

Digital Pattern Recognition written by King-Sun Fu and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1980 with categories.




Information Theory In Computer Vision And Pattern Recognition


Information Theory In Computer Vision And Pattern Recognition
DOWNLOAD
Author : Francisco Escolano Ruiz
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-07-14

Information Theory In Computer Vision And Pattern Recognition written by Francisco Escolano Ruiz and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-14 with Computers categories.


Information theory has proved to be effective for solving many computer vision and pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information...), principles (maximum entropy, minimax entropy...) and theories (rate distortion theory, method of types...). This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to a cross-fertilization of both areas.



Pattern Recognition And Machine Learning


Pattern Recognition And Machine Learning
DOWNLOAD
Author : Y. Anzai
language : en
Publisher: Elsevier
Release Date : 2012-12-02

Pattern Recognition And Machine Learning written by Y. Anzai and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-02 with Computers categories.


This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.



Moments And Moment Invariants In Pattern Recognition


Moments And Moment Invariants In Pattern Recognition
DOWNLOAD
Author : Jan Flusser
language : en
Publisher: John Wiley & Sons
Release Date : 2009-11-04

Moments And Moment Invariants In Pattern Recognition written by Jan Flusser and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-11-04 with Technology & Engineering categories.


Moments as projections of an image’s intensity onto a proper polynomial basis can be applied to many different aspects of image processing. These include invariant pattern recognition, image normalization, image registration, focus/ defocus measurement, and watermarking. This book presents a survey of both recent and traditional image analysis and pattern recognition methods, based on image moments, and offers new concepts of invariants to linear filtering and implicit invariants. In addition to the theory, attention is paid to efficient algorithms for moment computation in a discrete domain, and to computational aspects of orthogonal moments. The authors also illustrate the theory through practical examples, demonstrating moment invariants in real applications across computer vision, remote sensing and medical imaging. Key features: Presents a systematic review of the basic definitions and properties of moments covering geometric moments and complex moments. Considers invariants to traditional transforms – translation, rotation, scaling, and affine transform - from a new point of view, which offers new possibilities of designing optimal sets of invariants. Reviews and extends a recent field of invariants with respect to convolution/blurring. Introduces implicit moment invariants as a tool for recognizing elastically deformed objects. Compares various classes of orthogonal moments (Legendre, Zernike, Fourier-Mellin, Chebyshev, among others) and demonstrates their application to image reconstruction from moments. Offers comprehensive advice on the construction of various invariants illustrated with practical examples. Includes an accompanying website providing efficient numerical algorithms for moment computation and for constructing invariants of various kinds, with about 250 slides suitable for a graduate university course. Moments and Moment Invariants in Pattern Recognition is ideal for researchers and engineers involved in pattern recognition in medical imaging, remote sensing, robotics and computer vision. Post graduate students in image processing and pattern recognition will also find the book of interest.



Pattern Recognition


Pattern Recognition
DOWNLOAD
Author : Sergios Theodoridis
language : en
Publisher: Elsevier
Release Date : 2003-05-15

Pattern Recognition written by Sergios Theodoridis and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-05-15 with Technology & Engineering categories.


Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "learn" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest



Pattern Recognition Algorithms For Data Mining


Pattern Recognition Algorithms For Data Mining
DOWNLOAD
Author : Sankar K. Pal
language : en
Publisher: CRC Press
Release Date : 2004-05-27

Pattern Recognition Algorithms For Data Mining written by Sankar K. Pal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-05-27 with Computers categories.


Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks. Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.



Matrix Methods In Data Mining And Pattern Recognition


Matrix Methods In Data Mining And Pattern Recognition
DOWNLOAD
Author : Lars Elden
language : en
Publisher: SIAM
Release Date : 2007-07-12

Matrix Methods In Data Mining And Pattern Recognition written by Lars Elden and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-12 with Computers categories.


Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.