Digital Worker An Ai Agent Using Python Learn In Just 3 Hours

DOWNLOAD
Download Digital Worker An Ai Agent Using Python Learn In Just 3 Hours PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Digital Worker An Ai Agent Using Python Learn In Just 3 Hours book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Digital Worker An Ai Agent Using Python Learn In Just 3 Hours
DOWNLOAD
Author : QuickTechie | A career growth machine
language : en
Publisher: QuickTechie | A Career growth Machine
Release Date : 2025-02-01
Digital Worker An Ai Agent Using Python Learn In Just 3 Hours written by QuickTechie | A career growth machine and has been published by QuickTechie | A Career growth Machine this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-01 with Business & Economics categories.
Digital Worker: An AI Agent using Python Learn in Just 3 Hours" is a practical guide focused on enabling developers, tech enthusiasts, and business professionals to rapidly create and deploy AI-powered digital workers. This book emphasizes a hands-on approach to building AI agents using Python, making it accessible even for those with minimal prior experience in AI development. Designed to be completed within a focused three-hour timeframe, the book eschews lengthy theoretical explanations in favor of practical application. According to the book's approach, readers will quickly learn to build intelligent AI agents leveraging Python and contemporary AI frameworks. This includes understanding how to automate various tasks through the use of AI-driven decision-making processes and natural language processing (NLP). This knowledge will allow readers to integrate their custom-built AI workers into diverse real-world scenarios such as customer support systems, financial applications, and general enterprise automation solutions, as highlighted by the practical examples offered. Furthermore, the book offers guidance on optimizing and scaling AI agents, ensuring they operate with both efficiency and accuracy. The learning is structured through step-by-step tutorials and grounded in real-world examples, allowing the reader to quickly grasp fundamental AI concepts and begin implementing AI digital workers without months of preparatory study. As QuickTechie.com might endorse, whether you are a developer seeking to enhance your skills, an entrepreneur aiming to integrate automation into your business processes, or simply an AI enthusiast eager to explore practical applications, this book provides a rapid and effective pathway to harnessing the power of automation and AI. The book empowers individuals to start creating and deploying AI solutions quickly without a long and complex learning process.
Data Science For Marketing Analytics
DOWNLOAD
Author : Mirza Rahim Baig
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-09-07
Data Science For Marketing Analytics written by Mirza Rahim Baig and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-07 with Computers categories.
Turbocharge your marketing plans by making the leap from simple descriptive statistics in Excel to sophisticated predictive analytics with the Python programming language Key FeaturesUse data analytics and machine learning in a sales and marketing contextGain insights from data to make better business decisionsBuild your experience and confidence with realistic hands-on practiceBook Description Unleash the power of data to reach your marketing goals with this practical guide to data science for business. This book will help you get started on your journey to becoming a master of marketing analytics with Python. You'll work with relevant datasets and build your practical skills by tackling engaging exercises and activities that simulate real-world market analysis projects. You'll learn to think like a data scientist, build your problem-solving skills, and discover how to look at data in new ways to deliver business insights and make intelligent data-driven decisions. As well as learning how to clean, explore, and visualize data, you'll implement machine learning algorithms and build models to make predictions. As you work through the book, you'll use Python tools to analyze sales, visualize advertising data, predict revenue, address customer churn, and implement customer segmentation to understand behavior. By the end of this book, you'll have the knowledge, skills, and confidence to implement data science and machine learning techniques to better understand your marketing data and improve your decision-making. What you will learnLoad, clean, and explore sales and marketing data using pandasForm and test hypotheses using real data sets and analytics toolsVisualize patterns in customer behavior using MatplotlibUse advanced machine learning models like random forest and SVMUse various unsupervised learning algorithms for customer segmentationUse supervised learning techniques for sales predictionEvaluate and compare different models to get the best outcomesOptimize models with hyperparameter tuning and SMOTEWho this book is for This marketing book is for anyone who wants to learn how to use Python for cutting-edge marketing analytics. Whether you're a developer who wants to move into marketing, or a marketing analyst who wants to learn more sophisticated tools and techniques, this book will get you on the right path. Basic prior knowledge of Python and experience working with data will help you access this book more easily.
Artificial Intelligence With Python
DOWNLOAD
Author : Alberto Artasanchez
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-31
Artificial Intelligence With Python written by Alberto Artasanchez and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.
New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key FeaturesCompletely updated and revised to Python 3.xNew chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineeringLearn more about deep learning algorithms, machine learning data pipelines, and chatbotsBook Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learnUnderstand what artificial intelligence, machine learning, and data science areExplore the most common artificial intelligence use casesLearn how to build a machine learning pipelineAssimilate the basics of feature selection and feature engineeringIdentify the differences between supervised and unsupervised learningDiscover the most recent advances and tools offered for AI development in the cloudDevelop automatic speech recognition systems and chatbotsApply AI algorithms to time series dataWho this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.
Teach Your Kids To Code
DOWNLOAD
Author : Bryson Payne
language : en
Publisher: No Starch Press
Release Date : 2015-04-01
Teach Your Kids To Code written by Bryson Payne and has been published by No Starch Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-01 with Computers categories.
Teach Your Kids to Code is a parent's and teacher's guide to teaching kids basic programming and problem solving using Python, the powerful language used in college courses and by tech companies like Google and IBM. Step-by-step explanations will have kids learning computational thinking right away, while visual and game-oriented examples hold their attention. Friendly introductions to fundamental programming concepts such as variables, loops, and functions will help even the youngest programmers build the skills they need to make their own cool games and applications. Whether you've been coding for years or have never programmed anything at all, Teach Your Kids to Code will help you show your young programmer how to: –Explore geometry by drawing colorful shapes with Turtle graphics –Write programs to encode and decode messages, play Rock-Paper-Scissors, and calculate how tall someone is in Ping-Pong balls –Create fun, playable games like War, Yahtzee, and Pong –Add interactivity, animation, and sound to their apps Teach Your Kids to Code is the perfect companion to any introductory programming class or after-school meet-up, or simply your educational efforts at home. Spend some fun, productive afternoons at the computer with your kids—you can all learn something!
Artificial Intelligence With Python
DOWNLOAD
Author : Prateek Joshi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-01-27
Artificial Intelligence With Python written by Prateek Joshi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-27 with Computers categories.
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Explainable Ai With Python
DOWNLOAD
Author : Leonida Gianfagna
language : en
Publisher: Springer Nature
Release Date : 2021-04-28
Explainable Ai With Python written by Leonida Gianfagna and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-28 with Computers categories.
This book provides a full presentation of the current concepts and available techniques to make “machine learning” systems more explainable. The approaches presented can be applied to almost all the current “machine learning” models: linear and logistic regression, deep learning neural networks, natural language processing and image recognition, among the others. Progress in Machine Learning is increasing the use of artificial agents to perform critical tasks previously handled by humans (healthcare, legal and finance, among others). While the principles that guide the design of these agents are understood, most of the current deep-learning models are "opaque" to human understanding. Explainable AI with Python fills the current gap in literature on this emerging topic by taking both a theoretical and a practical perspective, making the reader quickly capable of working with tools and code for Explainable AI. Beginning with examples of what Explainable AI (XAI) is and why it is needed in the field, the book details different approaches to XAI depending on specific context and need. Hands-on work on interpretable models with specific examples leveraging Python are then presented, showing how intrinsic interpretable models can be interpreted and how to produce “human understandable” explanations. Model-agnostic methods for XAI are shown to produce explanations without relying on ML models internals that are “opaque.” Using examples from Computer Vision, the authors then look at explainable models for Deep Learning and prospective methods for the future. Taking a practical perspective, the authors demonstrate how to effectively use ML and XAI in science. The final chapter explains Adversarial Machine Learning and how to do XAI with adversarial examples.
Reinforcement Learning
DOWNLOAD
Author : Richard S. Sutton
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Reinforcement Learning written by Richard S. Sutton and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
Reinforcement learning is the learning of a mapping from situations to actions so as to maximize a scalar reward or reinforcement signal. The learner is not told which action to take, as in most forms of machine learning, but instead must discover which actions yield the highest reward by trying them. In the most interesting and challenging cases, actions may affect not only the immediate reward, but also the next situation, and through that all subsequent rewards. These two characteristics -- trial-and-error search and delayed reward -- are the most important distinguishing features of reinforcement learning. Reinforcement learning is both a new and a very old topic in AI. The term appears to have been coined by Minsk (1961), and independently in control theory by Walz and Fu (1965). The earliest machine learning research now viewed as directly relevant was Samuel's (1959) checker player, which used temporal-difference learning to manage delayed reward much as it is used today. Of course learning and reinforcement have been studied in psychology for almost a century, and that work has had a very strong impact on the AI/engineering work. One could in fact consider all of reinforcement learning to be simply the reverse engineering of certain psychological learning processes (e.g. operant conditioning and secondary reinforcement). Reinforcement Learning is an edited volume of original research, comprising seven invited contributions by leading researchers.
Conversational Ai
DOWNLOAD
Author : Andrew Freed
language : en
Publisher: Simon and Schuster
Release Date : 2021-10-12
Conversational Ai written by Andrew Freed and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-12 with Computers categories.
Conversational AI is a guide to creating AI-driven voice and text agents for customer support and other conversational tasks. This practical and entertaining book combines design theory with techniques for building and training AI systems. In it, you'll learn how to find training data, assess performance, and write dialog that sounds human. You'll go from building simple chatbots to designing the voice assistant for a complete call center.
Artificial Intelligence And Games
DOWNLOAD
Author : Georgios N. Yannakakis
language : en
Publisher: Springer
Release Date : 2018-02-17
Artificial Intelligence And Games written by Georgios N. Yannakakis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-17 with Computers categories.
This is the first textbook dedicated to explaining how artificial intelligence (AI) techniques can be used in and for games. After introductory chapters that explain the background and key techniques in AI and games, the authors explain how to use AI to play games, to generate content for games and to model players. The book will be suitable for undergraduate and graduate courses in games, artificial intelligence, design, human-computer interaction, and computational intelligence, and also for self-study by industrial game developers and practitioners. The authors have developed a website (http://www.gameaibook.org) that complements the material covered in the book with up-to-date exercises, lecture slides and reading.
The Economics Of Artificial Intelligence
DOWNLOAD
Author : Ajay Agrawal
language : en
Publisher: University of Chicago Press
Release Date : 2024-03-14
The Economics Of Artificial Intelligence written by Ajay Agrawal and has been published by University of Chicago Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-14 with Business & Economics categories.
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.