Discrete Dynamical Systems

DOWNLOAD
Download Discrete Dynamical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Discrete Dynamical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Discrete Dynamical Systems
DOWNLOAD
Author : Oded Galor
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-05-17
Discrete Dynamical Systems written by Oded Galor and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-17 with Business & Economics categories.
This book provides an introduction to discrete dynamical systems – a framework of analysis that is commonly used in the ?elds of biology, demography, ecology, economics, engineering, ?nance, and physics. The book characterizes the fundamental factors that govern the quantitative and qualitative trajectories of a variety of deterministic, discrete dynamical systems, providing solution methods for systems that can be solved analytically and methods of qualitative analysis for those systems that do not permit or necessitate an explicit solution. The analysis focuses initially on the characterization of the factors that govern the evolution of state variables in the elementary context of one-dimensional, ?rst-order, linear, autonomous systems. The f- damental insights about the forces that a?ect the evolution of these - ementary systems are subsequently generalized, and the determinants of the trajectories of multi-dimensional, nonlinear, higher-order, non- 1 autonomous dynamical systems are established. Chapter 1 focuses on the analysis of the evolution of state variables in one-dimensional, ?rst-order, autonomous systems. It introduces a method of solution for these systems, and it characterizes the traj- tory of a state variable, in relation to a steady-state equilibrium of the system, examining the local and global (asymptotic) stability of this steady-state equilibrium. The ?rst part of the chapter characterizes the factors that determine the existence, uniqueness and stability of a steady-state equilibrium in the elementary context of one-dimensional, ?rst-order, linear autonomous systems.
A First Course In Discrete Dynamical Systems
DOWNLOAD
Author : Richard A. Holmgren
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
A First Course In Discrete Dynamical Systems written by Richard A. Holmgren and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
An increasing number of colleges and universities are offering undergradu ate courses in discrete dynamical systems. This growth is due in part to the proliferation of inexpensive and powerful computers, which have provided access to the interesting and complex phenomena that are at the heart of dynamics. A second reason for introducing dynamics into the undergradu ate curriculum is that it serves as a bridge from concrete, often algorithmic calculus courses, to the more abstract concepts of analysis and topology. Discrete dynamical systems are essentially iterated functions, and if there is one thing computers do well, it is iteration. It is now possible for anyone with access to a personal computer to generate beautiful images whose roots lie in discrete dynamical systems. The mathematics behind the pictures are beautiful in their own right and are the subject of this text. Every effort has been made to exploit this opportunity to illustrate the beauty and power of mathematics in an interesting and engaging way. This work is first and foremost a mathematics book. Individuals who read it and do the exercises will gain not only an understanding of dynamical systems, but an increased understanding of the related areas in analysis as well.
Discrete Dynamical Systems
DOWNLOAD
Author : James T. Sandefur
language : en
Publisher: Oxford University Press, USA
Release Date : 1990
Discrete Dynamical Systems written by James T. Sandefur and has been published by Oxford University Press, USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with Mathematics categories.
This textbook is an elementary introduction to the world of dynamical systems and Chaos. Dynamical systems provide a mathematical means of modeling and analysing aspects of the changing world around us. The aim of this ground-breaking new text is to introduce the reader both to the wide variety of techniques used to study dynamical systems and to their many applications. In particular, investigation of dynamical systems leads to the important concepts of stability, strange attractors, Chaos, and fractals.
Discrete Dynamical Models
DOWNLOAD
Author : Ernesto Salinelli
language : en
Publisher: Springer
Release Date : 2014-06-11
Discrete Dynamical Models written by Ernesto Salinelli and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-11 with Mathematics categories.
This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economics. The exposition is self-contained: some appendices present prerequisites, algorithms and suggestions for computer simulations. The analysis of several examples is enriched by the proposition of many related exercises of increasing difficulty; in the last chapter the detailed solution is given for most of them.
Discrete Dynamical Systems And Difference Equations With Mathematica
DOWNLOAD
Author : Mustafa R.S. Kulenovic
language : en
Publisher: CRC Press
Release Date : 2002-02-27
Discrete Dynamical Systems And Difference Equations With Mathematica written by Mustafa R.S. Kulenovic and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-02-27 with Mathematics categories.
Following the work of Yorke and Li in 1975, the theory of discrete dynamical systems and difference equations developed rapidly. The applications of difference equations also grew rapidly, especially with the introduction of graphical-interface software that can plot trajectories, calculate Lyapunov exponents, plot bifurcation diagrams, and find ba
Chaos In Discrete Dynamical Systems
DOWNLOAD
Author : Ralph Abraham
language : en
Publisher: Springer Science & Business Media
Release Date : 1997
Chaos In Discrete Dynamical Systems written by Ralph Abraham and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Computers categories.
Chaos Theory is a synonym for dynamical systems theory, a branch of mathematics. Dynamical systems come in three flavors: flows (continuous dynamical systems), cascades (discrete, reversible, dynamical systems), and semi-cascades (discrete, irreversible, dynamical systems). Flows and semi-cascades are the classical systems iuntroduced by Poincare a centry ago, and are the subject of the extensively illustrated book: "Dynamics: The Geometry of Behavior," Addison-Wesley 1992 authored by Ralph Abraham and Shaw. Semi- cascades, also know as iterated function systems, are a recent innovation, and have been well-studied only in one dimension (the simplest case) since about 1950. The two-dimensional case is the current frontier of research. And from the computer graphcis of the leading researcher come astonishing views of the new landscape, such as the Julia and Mandelbrot sets in the beautiful books by Heinz-Otto Peigen and his co-workers. Now, the new theory of critical curves developed by Mira and his students and Toulouse provide a unique opportunity to explain the basic concepts of the theory of chaos and bifurcations for discete dynamical systems in two-dimensions. The materials in the book and on the accompanying disc are not solely developed only with the researcher and professional in mind, but also with consideration for the student. The book is replete with some 100 computer graphics to illustrate the material, and the CD-ROM contains full-color animations that are tied directly into the subject matter of the book, itself. In addition, much of this material has also been class-tested by the authors. The cross-platform CD also contains a software program called ENDO, which enables users to create their own 2-D imagery with X-Windows. Maple scripts are provided which give the reader the option of working directly with the code from which the graphcs in the book were
Formal Methods For Discrete Time Dynamical Systems
DOWNLOAD
Author : Calin Belta
language : en
Publisher: Springer
Release Date : 2017-03-08
Formal Methods For Discrete Time Dynamical Systems written by Calin Belta and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-08 with Technology & Engineering categories.
This book bridges fundamental gaps between control theory and formal methods. Although it focuses on discrete-time linear and piecewise affine systems, it also provides general frameworks for abstraction, analysis, and control of more general models. The book is self-contained, and while some mathematical knowledge is necessary, readers are not expected to have a background in formal methods or control theory. It rigorously defines concepts from formal methods, such as transition systems, temporal logics, model checking and synthesis. It then links these to the infinite state dynamical systems through abstractions that are intuitive and only require basic convex-analysis and control-theory terminology, which is provided in the appendix. Several examples and illustrations help readers understand and visualize the concepts introduced throughout the book.
An Introduction To Dynamical Systems
DOWNLOAD
Author : Rex Clark Robinson
language : en
Publisher: American Mathematical Soc.
Release Date : 2012
An Introduction To Dynamical Systems written by Rex Clark Robinson and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.
This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimension. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally, chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.
Stability Of Dynamical Systems
DOWNLOAD
Author :
language : en
Publisher: Springer Science & Business Media
Release Date : 2008
Stability Of Dynamical Systems written by and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Differentiable dynamical systems categories.
In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.
Discrete Dynamical Systems Bifurcations And Chaos In Economics
DOWNLOAD
Author : Wei-Bin Zhang
language : en
Publisher: Elsevier
Release Date : 2006-01-05
Discrete Dynamical Systems Bifurcations And Chaos In Economics written by Wei-Bin Zhang and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-05 with Mathematics categories.
This book is a unique blend of difference equations theory and its exciting applications to economics. It deals with not only theory of linear (and linearized) difference equations, but also nonlinear dynamical systems which have been widely applied to economic analysis in recent years. It studies most important concepts and theorems in difference equations theory in a way that can be understood by anyone who has basic knowledge of calculus and linear algebra. It contains well-known applications and many recent developments in different fields of economics. The book also simulates many models to illustrate paths of economic dynamics. - A unique book concentrated on theory of discrete dynamical systems and its traditional as well as advanced applications to economics - Mathematical definitions and theorems are introduced in a systematic and easily accessible way - Examples are from almost all fields of economics; technically proceeding from basic to advanced topics - Lively illustrations with numerous figures - Numerous simulation to see paths of economic dynamics - Comprehensive treatment of the subject with a comprehensive and easily accessible approach