[PDF] Discrete Time Markov Control Processes - eBooks Review

Discrete Time Markov Control Processes


Discrete Time Markov Control Processes
DOWNLOAD

Download Discrete Time Markov Control Processes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Discrete Time Markov Control Processes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Discrete Time Markov Control Processes


Discrete Time Markov Control Processes
DOWNLOAD
Author : Onesimo Hernandez-Lerma
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Discrete Time Markov Control Processes written by Onesimo Hernandez-Lerma and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This book presents the first part of a planned two-volume series devoted to a systematic exposition of some recent developments in the theory of discrete-time Markov control processes (MCPs). Interest is mainly confined to MCPs with Borel state and control (or action) spaces, and possibly unbounded costs and noncompact control constraint sets. MCPs are a class of stochastic control problems, also known as Markov decision processes, controlled Markov processes, or stochastic dynamic pro grams; sometimes, particularly when the state space is a countable set, they are also called Markov decision (or controlled Markov) chains. Regardless of the name used, MCPs appear in many fields, for example, engineering, economics, operations research, statistics, renewable and nonrenewable re source management, (control of) epidemics, etc. However, most of the lit erature (say, at least 90%) is concentrated on MCPs for which (a) the state space is a countable set, and/or (b) the costs-per-stage are bounded, and/or (c) the control constraint sets are compact. But curiously enough, the most widely used control model in engineering and economics--namely the LQ (Linear system/Quadratic cost) model-satisfies none of these conditions. Moreover, when dealing with "partially observable" systems) a standard approach is to transform them into equivalent "completely observable" sys tems in a larger state space (in fact, a space of probability measures), which is uncountable even if the original state process is finite-valued.



Further Topics On Discrete Time Markov Control Processes


Further Topics On Discrete Time Markov Control Processes
DOWNLOAD
Author : Onesimo Hernandez-Lerma
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Further Topics On Discrete Time Markov Control Processes written by Onesimo Hernandez-Lerma and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This book presents the second part of a two-volume series devoted to a sys tematic exposition of some recent developments in the theory of discrete time Markov control processes (MCPs). As in the first part, hereafter re ferred to as "Volume I" (see Hernandez-Lerma and Lasserre [1]), interest is mainly confined to MCPs with Borel state and control spaces, and possibly unbounded costs. However, an important feature of the present volume is that it is essentially self-contained and can be read independently of Volume I. The reason for this independence is that even though both volumes deal with similar classes of MCPs, the assumptions on the control models are usually different. For instance, Volume I deals only with nonnegative cost per-stage functions, whereas in the present volume we allow cost functions to take positive or negative values, as needed in some applications. Thus, many results in Volume Ion, say, discounted or average cost problems are not applicable to the models considered here. On the other hand, we now consider control models that typically re quire more restrictive classes of control-constraint sets and/or transition laws. This loss of generality is, of course, deliberate because it allows us to obtain more "precise" results. For example, in a very general context, in §4.



Further Topics On Discrete Time Markov Control Processes


Further Topics On Discrete Time Markov Control Processes
DOWNLOAD
Author : Onesimo Hernandez-Lerma
language : en
Publisher: Springer
Release Date : 2012-10-12

Further Topics On Discrete Time Markov Control Processes written by Onesimo Hernandez-Lerma and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-12 with Mathematics categories.


Devoted to a systematic exposition of some recent developments in the theory of discrete-time Markov control processes, the text is mainly confined to MCPs with Borel state and control spaces. Although the book follows on from the author's earlier work, an important feature of this volume is that it is self-contained and can thus be read independently of the first. The control model studied is sufficiently general to include virtually all the usual discrete-time stochastic control models that appear in applications to engineering, economics, mathematical population processes, operations research, and management science.



Adaptive Markov Control Processes


Adaptive Markov Control Processes
DOWNLOAD
Author : Onesimo Hernandez-Lerma
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Adaptive Markov Control Processes written by Onesimo Hernandez-Lerma and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This book is concerned with a class of discrete-time stochastic control processes known as controlled Markov processes (CMP's), also known as Markov decision processes or Markov dynamic programs. Starting in the mid-1950swith Richard Bellman, many contributions to CMP's have been made, and applications to engineering, statistics and operations research, among other areas, have also been developed. The purpose of this book is to present some recent developments on the theory of adaptive CMP's, i. e. , CMP's that depend on unknown parameters. Thus at each decision time, the controller or decision-maker must estimate the true parameter values, and then adapt the control actions to the estimated values. We do not intend to describe all aspects of stochastic adaptive control; rather, the selection of material reflects our own research interests. The prerequisite for this book is a knowledgeof real analysis and prob ability theory at the level of, say, Ash (1972) or Royden (1968), but no previous knowledge of control or decision processes is required. The pre sentation, on the other hand, is meant to beself-contained,in the sensethat whenever a result from analysisor probability is used, it is usually stated in full and references are supplied for further discussion, if necessary. Several appendices are provided for this purpose. The material is divided into six chapters. Chapter 1 contains the basic definitions about the stochastic control problems we are interested in; a brief description of some applications is also provided.



Discrete Time Markov Jump Linear Systems


Discrete Time Markov Jump Linear Systems
DOWNLOAD
Author : O.L.V. Costa
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-03-30

Discrete Time Markov Jump Linear Systems written by O.L.V. Costa and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-03-30 with Mathematics categories.


Safety critical and high-integrity systems, such as industrial plants and economic systems can be subject to abrupt changes - for instance due to component or interconnection failure, and sudden environment changes etc. Combining probability and operator theory, Discrete-Time Markov Jump Linear Systems provides a unified and rigorous treatment of recent results for the control theory of discrete jump linear systems, which are used in these areas of application. The book is designed for experts in linear systems with Markov jump parameters, but is also of interest for specialists in stochastic control since it presents stochastic control problems for which an explicit solution is possible - making the book suitable for course use. From the reviews: "This text is very well written...it may prove valuable to those who work in the area, are at home with its mathematics, and are interested in stability of linear systems, optimal control, and filtering." Journal of the American Statistical Association, December 2005



Examples In Markov Decision Processes


Examples In Markov Decision Processes
DOWNLOAD
Author : A. B. Piunovskiy
language : en
Publisher: World Scientific
Release Date : 2012

Examples In Markov Decision Processes written by A. B. Piunovskiy and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.


This invaluable book provides approximately eighty examples illustrating the theory of controlled discrete-time Markov processes. Except for applications of the theory to real-life problems like stock exchange, queues, gambling, optimal search etc, the main attention is paid to counter-intuitive, unexpected properties of optimization problems. Such examples illustrate the importance of conditions imposed in the theorems on Markov Decision Processes. Many of the examples are based upon examples published earlier in journal articles or textbooks while several other examples are new. The aim was to collect them together in one reference book which should be considered as a complement to existing monographs on Markov decision processes.The book is self-contained and unified in presentation.The main theoretical statements and constructions are provided, and particular examples can be read independently of others. Examples in Markov Decision Processes is an essential source of reference for mathematicians and all those who apply the optimal control theory to practical purposes. When studying or using mathematical methods, the researcher must understand what can happen if some of the conditions imposed in rigorous theorems are not satisfied. Many examples confirming the importance of such conditions were published in different journal articles which are often difficult to find. This book brings together examples based upon such sources, along with several new ones. In addition, it indicates the areas where Markov decision processes can be used. Active researchers can refer to this book on applicability of mathematical methods and theorems. It is also suitable reading for graduate and research students where they will better understand the theory.



Markov Processes And Controlled Markov Chains


Markov Processes And Controlled Markov Chains
DOWNLOAD
Author : Zhenting Hou
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-01

Markov Processes And Controlled Markov Chains written by Zhenting Hou and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-01 with Mathematics categories.


The general theory of stochastic processes and the more specialized theory of Markov processes evolved enormously in the second half of the last century. In parallel, the theory of controlled Markov chains (or Markov decision processes) was being pioneered by control engineers and operations researchers. Researchers in Markov processes and controlled Markov chains have been, for a long time, aware of the synergies between these two subject areas. However, this may be the first volume dedicated to highlighting these synergies and, almost certainly, it is the first volume that emphasizes the contributions of the vibrant and growing Chinese school of probability. The chapters that appear in this book reflect both the maturity and the vitality of modern day Markov processes and controlled Markov chains. They also will provide an opportunity to trace the connections that have emerged between the work done by members of the Chinese school of probability and the work done by the European, US, Central and South American and Asian scholars.



Markov Processes For Stochastic Modeling


Markov Processes For Stochastic Modeling
DOWNLOAD
Author : Oliver Ibe
language : en
Publisher: Newnes
Release Date : 2013-05-22

Markov Processes For Stochastic Modeling written by Oliver Ibe and has been published by Newnes this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-22 with Mathematics categories.


Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.



Hidden Markov Models


Hidden Markov Models
DOWNLOAD
Author : Robert J Elliott
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-09-27

Hidden Markov Models written by Robert J Elliott and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-09-27 with Science categories.


As more applications are found, interest in Hidden Markov Models continues to grow. Following comments and feedback from colleagues, students and other working with Hidden Markov Models the corrected 3rd printing of this volume contains clarifications, improvements and some new material, including results on smoothing for linear Gaussian dynamics. In Chapter 2 the derivation of the basic filters related to the Markov chain are each presented explicitly, rather than as special cases of one general filter. Furthermore, equations for smoothed estimates are given. The dynamics for the Kalman filter are derived as special cases of the authors’ general results and new expressions for a Kalman smoother are given. The Chapters on the control of Hidden Markov Chains are expanded and clarified. The revised Chapter 4 includes state estimation for discrete time Markov processes and Chapter 12 has a new section on robust control.



Handbook Of Markov Decision Processes


Handbook Of Markov Decision Processes
DOWNLOAD
Author : Eugene A. Feinberg
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Handbook Of Markov Decision Processes written by Eugene A. Feinberg and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Business & Economics categories.


Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a "good" control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation.