Dispersive Partial Differential Equations

DOWNLOAD
Download Dispersive Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dispersive Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Dispersive Partial Differential Equations
DOWNLOAD
Author : M. Burak Erdoğan
language : en
Publisher: Cambridge University Press
Release Date : 2016-05-12
Dispersive Partial Differential Equations written by M. Burak Erdoğan and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-12 with Mathematics categories.
Introduces nonlinear dispersive partial differential equations in a detailed yet elementary way without compromising the depth and richness of the subject.
Introduction To Nonlinear Dispersive Equations
DOWNLOAD
Author : Felipe Linares
language : en
Publisher: Springer
Release Date : 2014-12-15
Introduction To Nonlinear Dispersive Equations written by Felipe Linares and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-15 with Mathematics categories.
This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introduction to Nonlinear Dispersive Equations builds upon the success of the first edition by the addition of updated material on the main topics, an expanded bibliography, and new exercises. Assuming only basic knowledge of complex analysis and integration theory, this book will enable graduate students and researchers to enter this actively developing field.
Nonlinear Dispersive Partial Differential Equations And Inverse Scattering
DOWNLOAD
Author : Peter D. Miller
language : en
Publisher: Springer Nature
Release Date : 2019-11-14
Nonlinear Dispersive Partial Differential Equations And Inverse Scattering written by Peter D. Miller and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-14 with Mathematics categories.
This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift’s Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing nonlinear Schrödinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.
Nonlinear Dispersive Equations
DOWNLOAD
Author : Terence Tao
language : en
Publisher: American Mathematical Soc.
Release Date : 2006
Nonlinear Dispersive Equations written by Terence Tao and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.
"Starting only with a basic knowledge of graduate real analysis and Fourier analysis, the text first presents basic nonlinear tools such as the bootstrap method and perturbation theory in the simpler context of nonlinear ODE, then introduces the harmonic analysis and geometric tools used to control linear dispersive PDE. These methods are then combined to study four model nonlinear dispersive equations. Through extensive exercises, diagrams, and informal discussion, the book gives a rigorous theoretical treatment of the material, the real-world intuition and heuristics that underlie the subject, as well as mentioning connections with other areas of PDE, harmonic analysis, and dynamical systems.".
Introduction To Nonlinear Dispersive Equations
DOWNLOAD
Author : Felipe Linares
language : en
Publisher:
Release Date : 2015-01-31
Introduction To Nonlinear Dispersive Equations written by Felipe Linares and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-31 with categories.
Dispersive Equations And Nonlinear Waves
DOWNLOAD
Author : Herbert Koch
language : en
Publisher: Birkhäuser
Release Date : 2014-07-31
Dispersive Equations And Nonlinear Waves written by Herbert Koch and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-31 with Mathematics categories.
The first part of the book provides an introduction to key tools and techniques in dispersive equations: Strichartz estimates, bilinear estimates, modulation and adapted function spaces, with an application to the generalized Korteweg-de Vries equation and the Kadomtsev-Petviashvili equation. The energy-critical nonlinear Schrödinger equation, global solutions to the defocusing problem, and scattering are the focus of the second part. Using this concrete example, it walks the reader through the induction on energy technique, which has become the essential methodology for tackling large data critical problems. This includes refined/inverse Strichartz estimates, the existence and almost periodicity of minimal blow up solutions, and the development of long-time Strichartz inequalities. The third part describes wave and Schrödinger maps. Starting by building heuristics about multilinear estimates, it provides a detailed outline of this very active area of geometric/dispersive PDE. It focuses on concepts and ideas and should provide graduate students with a stepping stone to this exciting direction of research.
Nonlinear Dispersive Waves
DOWNLOAD
Author : Mark J. Ablowitz
language : en
Publisher: Cambridge University Press
Release Date : 2011-09-08
Nonlinear Dispersive Waves written by Mark J. Ablowitz and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-08 with Mathematics categories.
The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg–de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science.
Partial Differential Equations
DOWNLOAD
Author : Walter A. Strauss
language : en
Publisher: John Wiley & Sons
Release Date : 2007-12-21
Partial Differential Equations written by Walter A. Strauss and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-12-21 with Mathematics categories.
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Qualitative Properties Of Dispersive Pdes
DOWNLOAD
Author : Vladimir Georgiev
language : en
Publisher: Springer Nature
Release Date : 2022-12-02
Qualitative Properties Of Dispersive Pdes written by Vladimir Georgiev and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-02 with Mathematics categories.
This book provides a valuable collection of contributions by distinguished scholars presenting the state of the art and some of the most significant latest developments and future challenges in the field of dispersive partial differential equations. The material covers four major lines: (1) Long time behaviour of NLS-type equations, (2) probabilistic and nonstandard methods in the study of NLS equation, (3) dispersive properties for heat-, Schrödinger-, and Dirac-type flows, (4) wave and KdV-type equations. Across a variety of applications an amount of crucial mathematical tools are discussed, whose applicability and versatility goes beyond the specific models presented here. Furthermore, all contributions include updated and comparative literature.
Nonlinear Dynamics
DOWNLOAD
Author : Muthusamy Lakshmanan
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Nonlinear Dynamics written by Muthusamy Lakshmanan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Integrability, chaos and patterns are three of the most important concepts in nonlinear dynamics. These are covered in this book from fundamentals to recent developments. The book presents a self-contained treatment of the subject to suit the needs of students, teachers and researchers in physics, mathematics, engineering and applied sciences who wish to gain a broad knowledge of nonlinear dynamics. It describes fundamental concepts, theoretical procedures, experimental and numerical techniques and technological applications of nonlinear dynamics. Numerous examples and problems are included to facilitate the understanding of the concepts and procedures described. In addition to 16 chapters of main material, the book contains 10 appendices which present in-depth mathematical formulations involved in the analysis of various nonlinear systems.