Displacement Based Seismic Design Of Reinforced Concrete Buildings


Displacement Based Seismic Design Of Reinforced Concrete Buildings
DOWNLOAD eBooks

Download Displacement Based Seismic Design Of Reinforced Concrete Buildings PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Displacement Based Seismic Design Of Reinforced Concrete Buildings book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Displacement Based Seismic Design Of Reinforced Concrete Buildings


Displacement Based Seismic Design Of Reinforced Concrete Buildings
DOWNLOAD eBooks

Author : fib Fédération internationale du béton
language : en
Publisher: fib Fédération internationale du béton
Release Date : 2003

Displacement Based Seismic Design Of Reinforced Concrete Buildings written by fib Fédération internationale du béton and has been published by fib Fédération internationale du béton this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Technology & Engineering categories.


A brief summary of the history of seismic design as given in chapter 1, indicates that initially design was purely based on strength or force considerations. When the importance of displacement, however, became better appreciated, it was attempted to modify the existing force-based approach in order to include considerations of displacement, rather than to totally reconsider the procedure on a more rational basis. In the last decade, then, several researchers started pointing out this inconsistency, proposing displacement-based approaches for earthquake engineering evaluation and design, with the aim of providing improved reliability in the engineering process by more directly relating computed response and expected structural performance. The main objective of this report is to summarize, critically review and compare the displacement - based approaches proposed in the literature, thus favouring code implementation and practical use of rational and reliable methods. Chapter 2 Seismic performance and design objectives of this report introduces concepts of performance levels, seismic hazard representation, and the coupling of performance and hazard to define performance objectives. In fact, for displacement analysis to be relevant in the context of performance-based design, the structural engineer must select appropriate performance levels and seismic loadings. A critical review of some engineering limit states appropriate to the different performance levels is therefore proposed. In chapter 3 Conceptual basis for displacement-based earthquake resistant design, the fundamental principles associated with displacement of the ground during an earthquake and the effects, in terms of displacement, in the structure, are reviewed. The historical development guides the presentation with a review of general linear and nonlinear structural dynamics principles, general approaches to estimate displacement, for both ground and structure, and finally a general presentation of the means to measure and judge the appropriateness of the displacements of the structure in section. Chapter 4 Approaches and procedures for displacement-based design can be somehow considered the fundamental part of the report, since a critical summary of the displacement - based approaches proposed by different researchers is presented there. Displacement - based design may require specific characterization of the input ground motion, a topic addressed in Chapter 5 Seismic input. In general, various pertinent definitions of input motion for non-code format analysis are included, while peak ground parameters necessary for code base shear equations are only addressed as needed for the definition of motion for analysis. Chapter 6 Displacement capacity of members and systems addresses the fundamental problem of evaluating the inelastic displacement capacity of reinforced concrete members and realistic values of their effective cracked stiffness at yielding, including effects of shear and inclined cracking, anchorage slip, bar buckling and of load cycling. In Chapter 7 Application and evaluation of displacement-based approaches, some of the many different displacement based design procedures briefly introduced in Chapter 4 are applied to various case studies, identifying and discussing the difficulties a designer may encounter when trying to use displacement based design. Results for five different case studies designed in accordance with eight different displacement based design methods are presented. Although in general case studies are considered a useful but marginal part of a state of the art document, in this case it has to be noted that chapter 7 is possibly the most innovative and fundamental part of the whole report. The conclusions of chapter 7 are the fundamental and essential conclusions of the document and allow foreseeing a bright future for displacement - based design approaches. The state-of-art report has been elaborated over a period of 4 years by Task Group 7.2 Displacement-based design and assessment of fib Commission 7Seismic design, a truly international team of experts, representing the expertise and experience of all the important seismic regions of the world. In October 2002 the final draft of the Bulletin was presented to the public during the 1st fibCongress in Osaka. It was also there that it was approved by fib Commission 7Seismic Design.



Displacement Based Seismic Design Of Structures


Displacement Based Seismic Design Of Structures
DOWNLOAD eBooks

Author : M. J. N. Priestley
language : en
Publisher: Iuss Press
Release Date : 2007

Displacement Based Seismic Design Of Structures written by M. J. N. Priestley and has been published by Iuss Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Science categories.


Displacement-Based Seismic Design of Structures is a book primarily directed towards practicing structural designers who are interested in applying performance-based concepts to seismic design. Since much of the material presented in the book has not been published elsewhere, it will also be of considerable interest to researchers, and to graduate and upper-level undergraduate students of earthquake engineering who wish to develop a deeper understanding of how design can be used to control seismic response. The design philosophy is based on determination of the optimum structural strength to achieve a given performance limit state, related to a defined level of damage, under a specified level of seismic intensity. Emphasis is also placed on how this strength is distributed through the structure. This takes two forms: methods of structural analysis and capacity design. It is shown that equilibrium considerations frequently lead to a more advantageous distribution of strength than that resulting from stiffness considerations. Capacity design considerations have been re-examined, and new and more realistic design approaches are presented to insure against undesirable modes of inelastic deformation. The book considers a wide range of structural types, including separate chapters on frame buildings, wall buildings, dual wall/frame buildings, masonry buildings, timber structures, bridges, structures with isolation or added damping devices, and wharves. These are preceded by introductory chapters discussing conceptual problems with current force-based design, seismic input for displacement-based design, fundamentals of direct displacement-based design, and analytical tools appropriate for displacement-based design. The final two chapters adapt the principles of displacement-based seismic design to assessment of existing structures, and present the previously developed design information in the form of a draft building code. The text is illustrated by copious worked design examples (39 in all), and analysis aids are provided in the form of a CD containing three computer programs covering moment-curvature analysis (Cumbia), linear-element-based inelastic time-history analysis (Ruaumoko), and a general fibre-element dynamic analysis program (SeismoStruct). The design procedure developed in this book is based on a secant-stiffness (rather than initial stiffness) representation of structural response, using a level of damping equivalent to the combined effects of elastic and hysteretic damping. The approach has been fully verified by extensive inelastic time history analyses, which are extensively reported in the text. The design method is extremely simple to apply, and very successful in providing dependable and predictable seismic response. Authors Bios M.J.N.Priestley Nigel Priestley is Professor Emeritus of the University of California San Diego, and co-Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy. He has published more than 450 papers, mainly on earthquake engineering, and received numerous awards for his research. He holds honorary doctorates from ETH, Zurich, and Cujo, Argentina. He is co-author of two previous seismic design books “Seismic Design of Concrete and Masonry Buildings” and “Seismic Design and Retrofit of Bridges”, that are considered standard texts on the subjects. G.M.Calvi Michele Calvi is Professor of the University of Pavia and Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS) of Pavia. He has published more than 200 papers and is co-author of the book “Seismic Design and Retrofit of Bridges”, that is considered a standard text on the subject, has been involved in important construction projects worldwide, such as the Rion Bridge in Greece and the upgrading of the Bolu Viaduct in Turkey, and is coordinating several international research projects. M.J.Kowalsky Mervyn Kowalsky is Associate Professor of Structural Engineering in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University and a member of the faculty of the ROSE School. His research, which has largely focused on the seismic behaviour of structures, has been supported by the National Science Foundation, the North Carolina and Alaska Departments of Transportation, and several industrial organizations. He is a registered Professional Engineer in North Carolina and an active member of several national and international committees on Performance-Based Seismic Design.



Seismic Design Assessment And Retrofitting Of Concrete Buildings


Seismic Design Assessment And Retrofitting Of Concrete Buildings
DOWNLOAD eBooks

Author : Michael N. Fardis
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-07-25

Seismic Design Assessment And Retrofitting Of Concrete Buildings written by Michael N. Fardis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-25 with Technology & Engineering categories.


Reflecting the historic first European seismic code, this professional book focuses on seismic design, assessment and retrofitting of concrete buildings, with thorough reference to, and application of, EN-Eurocode 8. Following the publication of EN-Eurocode 8 in 2004-05, 30 countries are now introducing this European standard for seismic design, for application in parallel with existing national standards (till March 2010) and exclusively after that. Eurocode 8 is also expected to influence standards in countries outside Europe, or at the least, to be applied there for important facilities. Owing to the increasing awareness of the threat posed by existing buildings substandard and deficient buildings and the lack of national or international standards for assessment and retrofitting, its impact in that field is expected to be major. Written by the lead person in the development of the EN-Eurocode 8, the present handbook explains the principles and rationale of seismic design according to modern codes and provides thorough guidance for the conceptual seismic design of concrete buildings and their foundations. It examines the experimental behaviour of concrete members under cyclic loading and modelling for design and analysis purposes; it develops the essentials of linear or nonlinear seismic analysis for the purposes of design, assessment and retrofitting (especially using Eurocode 8); and gives detailed guidance for modelling concrete buildings at the member and at the system level. Moreover, readers gain access to overviews of provisions of Eurocode 8, plus an understanding for them on the basis of the simple models of the element behaviour presented in the book. Also examined are the modern trends in performance- and displacement-based seismic assessment of existing buildings, comparing the relevant provisions of Eurocode 8 with those of new US prestandards, and details of the most common and popular seismic retrofitting techniques for concrete buildings and guidance for retrofitting strategies at the system level. Comprehensive walk-through examples of detailed design elucidate the application of Eurocode 8 to common situations in practical design. Examples and case studies of seismic assessment and retrofitting of a few real buildings are also presented. From the reviews: "This is a massive book that has no equal in the published literature, as far as the reviewer knows. It is dense and comprehensive and leaves nothing to chance. It is certainly taxing on the reader and the potential user, but without it, use of Eurocode 8 will be that much more difficult. In short, this is a must-read book for researchers and practitioners in Europe, and of use to readers outside of Europe too. This book will remain an indispensable backup to Eurocode 8 and its existing Designers’ Guide to EN 1998-1 and EN 1998-5 (published in 2005), for many years to come. Congratulations to the author for a very well planned scope and contents, and for a flawless execution of the plan". AMR S. ELNASHAI "The book is an impressive source of information to understand the response of reinforced concrete buildings under seismic loads with the ultimate goal of presenting and explaining the state of the art of seismic design. Underlying the contents of the book is the in-depth knowledge of the author in this field and in particular his extremely important contribution to the development of the European Design Standard EN 1998 - Eurocode 8: Design of structures for earthquake resistance. However, although Eurocode 8 is at the core of the book, many comparisons are made to other design practices, namely from the US and from Japan, thus enriching the contents and interest of the book". EDUARDO C. CARVALHO



Seismic Design Of Reinforced Concrete Structures For Controlled Inelastic Response


Seismic Design Of Reinforced Concrete Structures For Controlled Inelastic Response
DOWNLOAD eBooks

Author : Comité euro-international du béton
language : en
Publisher: Thomas Telford
Release Date : 1998

Seismic Design Of Reinforced Concrete Structures For Controlled Inelastic Response written by Comité euro-international du béton and has been published by Thomas Telford this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Technology & Engineering categories.


This detailed guide is designed to enable the reader to understand the relative importance of the numerous parameters involved in seismic design and the relationships between them, as well as the motivations behind the choices adopted by the codes.



Displacement Based Seismic Design For Multi Storey Cross Laminated Timber Buildings


Displacement Based Seismic Design For Multi Storey Cross Laminated Timber Buildings
DOWNLOAD eBooks

Author : Hummel, Johannes
language : en
Publisher: kassel university press GmbH
Release Date : 2017

Displacement Based Seismic Design For Multi Storey Cross Laminated Timber Buildings written by Hummel, Johannes and has been published by kassel university press GmbH this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.


Key Terms: cross laminated timber, displacement-based seismic design, time history analysis, multi-storey timber structures, hysteretic behaviour



Seismic Design Of Reinforced Concrete Structures For Controlled Inelastic Response Design Concepts


Seismic Design Of Reinforced Concrete Structures For Controlled Inelastic Response Design Concepts
DOWNLOAD eBooks

Author : FIB – International Federation for Structural Concrete
language : en
Publisher: FIB - International Federation for Structural Concrete
Release Date : 1997-03-01

Seismic Design Of Reinforced Concrete Structures For Controlled Inelastic Response Design Concepts written by FIB – International Federation for Structural Concrete and has been published by FIB - International Federation for Structural Concrete this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-03-01 with Technology & Engineering categories.




Design Of Reinforced Concrete Buildings For Seismic Performance


Design Of Reinforced Concrete Buildings For Seismic Performance
DOWNLOAD eBooks

Author : Mark Aschheim
language : en
Publisher: CRC Press
Release Date : 2019-04-05

Design Of Reinforced Concrete Buildings For Seismic Performance written by Mark Aschheim and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-05 with Technology & Engineering categories.


The costs of inadequate earthquake engineering are huge, especially for reinforced concrete buildings. This book presents the principles of earthquake-resistant structural engineering, and uses the latest tools and techniques to give practical design guidance to address single or multiple seismic performance levels. It presents an elegant, simple and theoretically coherent design framework. Required strength is determined on the basis of an estimated yield displacement and desired limits of system ductility and drift demands. A simple deterministic approach is presented along with its elaboration into a probabilistic treatment that allows for design to limit annual probabilities of failure. The design method allows the seismic force resisting system to be designed on the basis of elastic analysis results, while nonlinear analysis is used for performance verification. Detailing requirements of ACI 318 and Eurocode 8 are presented. Students will benefit from the coverage of seismology, structural dynamics, reinforced concrete, and capacity design approaches, which allows the book to be used as a foundation text in earthquake engineering.



Performance Based Seismic Design Of Concrete Structures And Infrastructures


Performance Based Seismic Design Of Concrete Structures And Infrastructures
DOWNLOAD eBooks

Author : Plevris, Vagelis
language : en
Publisher: IGI Global
Release Date : 2017-02-14

Performance Based Seismic Design Of Concrete Structures And Infrastructures written by Plevris, Vagelis and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-14 with Technology & Engineering categories.


Solid design and craftsmanship are a necessity for structures and infrastructures that must stand up to natural disasters on a regular basis. Continuous research developments in the engineering field are imperative for sustaining buildings against the threat of earthquakes and other natural disasters. Performance-Based Seismic Design of Concrete Structures and Infrastructures is an informative reference source on all the latest trends and emerging data associated with structural design. Highlighting key topics such as seismic assessments, shear wall structures, and infrastructure resilience, this is an ideal resource for all academicians, students, professionals, and researchers that are seeking new knowledge on the best methods and techniques for designing solid structural designs.



Concrete Buildings In Seismic Regions


Concrete Buildings In Seismic Regions
DOWNLOAD eBooks

Author : George G. Penelis
language : en
Publisher: CRC Press
Release Date : 2014-03-24

Concrete Buildings In Seismic Regions written by George G. Penelis and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-24 with Technology & Engineering categories.


Bearing in mind that reinforced concrete is a key component in a majority of built environment structures, Concrete Buildings in Seismic Regions combines the scientific knowledge of earthquake engineering with a focus on the design of reinforced concrete buildings in seismic regions. This book addresses practical design issues, providing an integrated, comprehensible, and clear presentation that is suitable for design practice. It combines current approaches to seismic analysis and design, with a particular focus on reinforced concrete structures, and includes: an overview of structural dynamics analysis and design of new R/C buildings in seismic regions post-earthquake damage evaluation, pre earthquake assessment of buildings and retrofitting procedures seismic risk management of R/C buildings within urban nuclei extended numerical example applications Concrete Buildings in Seismic Regions determines guidelines for the proper structural system for many types of buildings, explores recent developments, and covers the last two decades of analysis, design, and earthquake engineering. Divided into three parts, the book specifically addresses seismic demand issues and the basic issues of structural dynamics, considers the "capacity" of structural systems to withstand seismic effects in terms of strength and deformation, and highlights existing R/C buildings under seismic action. All of the book material has been adjusted to fit a modern seismic code and offers in-depth knowledge of the background upon which the code rules are based. It complies with the last edition of European Codes of Practice for R/C buildings in seismic regions, and includes references to the American Standards in effect for seismic design.



Dynamic Behaviour Of Reinforced Concrete Frames Designed With Direct Displacement Based Design


Dynamic Behaviour Of Reinforced Concrete Frames Designed With Direct Displacement Based Design
DOWNLOAD eBooks

Author : J. Didier Pettinga
language : en
Publisher:
Release Date : 2005

Dynamic Behaviour Of Reinforced Concrete Frames Designed With Direct Displacement Based Design written by J. Didier Pettinga and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Earthquake resistant design categories.