Distributed Optimization And Learning

DOWNLOAD
Download Distributed Optimization And Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Distributed Optimization And Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Distributed Optimization And Learning
DOWNLOAD
Author : Zhongguo Li
language : en
Publisher: Elsevier
Release Date : 2024-07-18
Distributed Optimization And Learning written by Zhongguo Li and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-18 with Technology & Engineering categories.
Distributed Optimization and Learning: A Control-Theoretic Perspective illustrates the underlying principles of distributed optimization and learning. The book presents a systematic and self-contained description of distributed optimization and learning algorithms from a control-theoretic perspective. It focuses on exploring control-theoretic approaches and how those approaches can be utilized to solve distributed optimization and learning problems over network-connected, multi-agent systems. As there are strong links between optimization and learning, this book provides a unified platform for understanding distributed optimization and learning algorithms for different purposes. - Provides a series of the latest results, including but not limited to, distributed cooperative and competitive optimization, machine learning, and optimal resource allocation - Presents the most recent advances in theory and applications of distributed optimization and machine learning, including insightful connections to traditional control techniques - Offers numerical and simulation results in each chapter in order to reflect engineering practice and demonstrate the main focus of developed analysis and synthesis approaches
Distributed Optimization For Smart Cyber Physical Networks
DOWNLOAD
Author : GIUSEPPE NOTARSTEFANO;IVANO NOTARNICOLA;ANDREA CAM.
language : en
Publisher:
Release Date : 2019
Distributed Optimization For Smart Cyber Physical Networks written by GIUSEPPE NOTARSTEFANO;IVANO NOTARNICOLA;ANDREA CAM. and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Cooperating objects (Computer systems) categories.
Distributed Optimization for Smart Cyber-Physical Networks provides the reader with an accessible overview of the current research and gives important pointers towards new developments. It is an excellent starting point for research and students unfamiliar with the topic.
Scaling Up Machine Learning
DOWNLOAD
Author : Ron Bekkerman
language : en
Publisher: Cambridge University Press
Release Date : 2012
Scaling Up Machine Learning written by Ron Bekkerman and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Computers categories.
This integrated collection covers a range of parallelization platforms, concurrent programming frameworks and machine learning settings, with case studies.
First Order And Stochastic Optimization Methods For Machine Learning
DOWNLOAD
Author : Guanghui Lan
language : en
Publisher: Springer Nature
Release Date : 2020-05-15
First Order And Stochastic Optimization Methods For Machine Learning written by Guanghui Lan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-15 with Mathematics categories.
This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.
Optimization For Machine Learning
DOWNLOAD
Author : Suvrit Sra
language : en
Publisher: MIT Press
Release Date : 2012
Optimization For Machine Learning written by Suvrit Sra and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Computers categories.
An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.
Distributed Optimization And Statistical Learning Via The Alternating Direction Method Of Multipliers
DOWNLOAD
Author : Stephen Boyd
language : en
Publisher: Now Publishers Inc
Release Date : 2011
Distributed Optimization And Statistical Learning Via The Alternating Direction Method Of Multipliers written by Stephen Boyd and has been published by Now Publishers Inc this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Computers categories.
Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.
Federated Learning
DOWNLOAD
Author : Qiang Yang
language : en
Publisher: Springer Nature
Release Date : 2020-11-25
Federated Learning written by Qiang Yang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-25 with Computers categories.
This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”
Distributed Optimization Game And Learning Algorithms
DOWNLOAD
Author : Huiwei Wang
language : en
Publisher: Springer Nature
Release Date : 2021-01-04
Distributed Optimization Game And Learning Algorithms written by Huiwei Wang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-04 with Technology & Engineering categories.
This book provides the fundamental theory of distributed optimization, game and learning. It includes those working directly in optimization,-and also many other issues like time-varying topology, communication delay, equality or inequality constraints,-and random projections. This book is meant for the researcher and engineer who uses distributed optimization, game and learning theory in fields like dynamic economic dispatch, demand response management and PHEV routing of smart grids.
Rollout Policy Iteration And Distributed Reinforcement Learning
DOWNLOAD
Author : Dimitri Bertsekas
language : en
Publisher: Athena Scientific
Release Date : 2021-08-20
Rollout Policy Iteration And Distributed Reinforcement Learning written by Dimitri Bertsekas and has been published by Athena Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-20 with Computers categories.
The purpose of this book is to develop in greater depth some of the methods from the author's Reinforcement Learning and Optimal Control recently published textbook (Athena Scientific, 2019). In particular, we present new research, relating to systems involving multiple agents, partitioned architectures, and distributed asynchronous computation. We pay special attention to the contexts of dynamic programming/policy iteration and control theory/model predictive control. We also discuss in some detail the application of the methodology to challenging discrete/combinatorial optimization problems, such as routing, scheduling, assignment, and mixed integer programming, including the use of neural network approximations within these contexts. The book focuses on the fundamental idea of policy iteration, i.e., start from some policy, and successively generate one or more improved policies. If just one improved policy is generated, this is called rollout, which, based on broad and consistent computational experience, appears to be one of the most versatile and reliable of all reinforcement learning methods. In this book, rollout algorithms are developed for both discrete deterministic and stochastic DP problems, and the development of distributed implementations in both multiagent and multiprocessor settings, aiming to take advantage of parallelism. Approximate policy iteration is more ambitious than rollout, but it is a strictly off-line method, and it is generally far more computationally intensive. This motivates the use of parallel and distributed computation. One of the purposes of the monograph is to discuss distributed (possibly asynchronous) methods that relate to rollout and policy iteration, both in the context of an exact and an approximate implementation involving neural networks or other approximation architectures. Much of the new research is inspired by the remarkable AlphaZero chess program, where policy iteration, value and policy networks, approximate lookahead minimization, and parallel computation all play an important role.
Optimization In Machine Learning And Applications
DOWNLOAD
Author : Anand J. Kulkarni
language : en
Publisher: Springer
Release Date : 2020-12-10
Optimization In Machine Learning And Applications written by Anand J. Kulkarni and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-10 with Technology & Engineering categories.
This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.