[PDF] Dynamic Calculus And Equations On Time Scales - eBooks Review

Dynamic Calculus And Equations On Time Scales


Dynamic Calculus And Equations On Time Scales
DOWNLOAD

Download Dynamic Calculus And Equations On Time Scales PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamic Calculus And Equations On Time Scales book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Dynamic Equations On Time Scales


Dynamic Equations On Time Scales
DOWNLOAD
Author : Martin Bohner
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-06-15

Dynamic Equations On Time Scales written by Martin Bohner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-06-15 with Language Arts & Disciplines categories.


The study of dynamic equations on a measure chain (time scale) goes back to its founder S. Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on measure chains can build bridges between continuous and discrete mathematics. Further, the study of measure chain theory has led to several important applications, e.g., in the study of insect population models, neural networks, heat transfer, and epidemic models. Key features of the book: * Introduction to measure chain theory; discussion of its usefulness in allowing for the simultaneous development of differential equations and difference equations without having to repeat analogous proofs * Many classical formulas or procedures for differential and difference equations cast in a new light * New analogues of many of the "special functions" studied * Examination of the properties of the "exponential function" on time scales, which can be defined and investigated using a particularly simple linear equation * Additional topics covered: self-adjoint equations, linear systems, higher order equations, dynamic inequalities, and symplectic dynamic systems * Clear, motivated exposition, beginning with preliminaries and progressing to more sophisticated text * Ample examples and exercises throughout the book * Solutions to selected problems Requiring only a first semester of calculus and linear algebra, Dynamic Equations on Time Scales may be considered as an interesting approach to differential equations via exposure to continuous and discrete analysis. This approach provides an early encounter with many applications in such areas as biology, physics, and engineering. Parts of the book may be used in a special topics seminar at the senior undergraduate or beginning graduate levels. Finally, the work may



Advances In Dynamic Equations On Time Scales


Advances In Dynamic Equations On Time Scales
DOWNLOAD
Author : Martin Bohner
language : en
Publisher: Springer Science & Business Media
Release Date : 2002-12-06

Advances In Dynamic Equations On Time Scales written by Martin Bohner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-12-06 with Mathematics categories.


Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.



Dynamic Calculus And Equations On Time Scales


Dynamic Calculus And Equations On Time Scales
DOWNLOAD
Author : Svetlin G. Georgiev
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2023-09-18

Dynamic Calculus And Equations On Time Scales written by Svetlin G. Georgiev and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-18 with Mathematics categories.


The latest advancements in time scale calculus are the focus of this book. New types of time-scale integral transforms are discussed in the book, along with how they can be used to solve dynamic equations. Novel numerical techniques for partial dynamic equations on time scales are described. New time scale inequalities for exponentially convex functions are introduced as well.



Dynamic Calculus And Equations On Time Scales


Dynamic Calculus And Equations On Time Scales
DOWNLOAD
Author : Svetlin G. Georgiev
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2023-09-18

Dynamic Calculus And Equations On Time Scales written by Svetlin G. Georgiev and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-18 with Mathematics categories.


The latest advancements in time scale calculus are the focus of this book. New types of time-scale integral transforms are discussed in the book, along with how they can be used to solve dynamic equations. Novel numerical techniques for partial dynamic equations on time scales are described. New time scale inequalities for exponentially convex functions are introduced as well.



Dynamic Systems On Measure Chains


Dynamic Systems On Measure Chains
DOWNLOAD
Author : V. Lakshmikantham
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29

Dynamic Systems On Measure Chains written by V. Lakshmikantham and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Mathematics categories.


From a modelling point of view, it is more realistic to model a phenomenon by a dynamic system which incorporates both continuous and discrete times, namely, time as an arbitrary closed set of reals called time-scale or measure chain. It is therefore natural to ask whether it is possible to provide a framework which permits us to handle both dynamic systems simultaneously so that one can get some insight and a better understanding of the subtle differences of these two different systems. The answer is affirmative, and recently developed theory of dynamic systems on time scales offers the desired unified approach. In this monograph, we present the current state of development of the theory of dynamic systems on time scales from a qualitative point of view. It consists of four chapters. Chapter one develops systematically the necessary calculus of functions on time scales. In chapter two, we introduce dynamic systems on time scales and prove the basic properties of solutions of such dynamic systems. The theory of Lyapunov stability is discussed in chapter three in an appropriate setup. Chapter four is devoted to describing several different areas of investigations of dynamic systems on time scales which will provide an exciting prospect and impetus for further advances in this important area which is very new. Some important features of the monograph are as follows: It is the first book that is dedicated to a systematic development of the theory of dynamic systems on time scales which is of recent origin. It demonstrates the interplay of the two different theories, namely, the theory of continuous and discrete dynamic systems, when imbedded in one unified framework. It provides an impetus to investigate in the setup of time scales other important problems which might offer a better understanding of the intricacies of a unified study.£/LIST£ Audience: Thereadership of this book consists of applied mathematicians, engineering scientists, research workers in dynamic systems, chaotic theory and neural nets.



Scaling Of Differential Equations


Scaling Of Differential Equations
DOWNLOAD
Author : Hans Petter Langtangen
language : en
Publisher: Springer
Release Date : 2016-06-15

Scaling Of Differential Equations written by Hans Petter Langtangen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-15 with Mathematics categories.


The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and example-driven. The first part on ODEs fits even a lower undergraduate level, while the most advanced multiphysics fluid mechanics examples target the graduate level. The scientific literature is full of scaled models, but in most of the cases, the scales are just stated without thorough mathematical reasoning. This book explains how the scales are found mathematically. This book will be a valuable read for anyone doing numerical simulations based on ordinary or partial differential equations.



Asymptotic Integration Of Differential And Difference Equations


Asymptotic Integration Of Differential And Difference Equations
DOWNLOAD
Author : Sigrun Bodine
language : en
Publisher: Springer
Release Date : 2015-05-26

Asymptotic Integration Of Differential And Difference Equations written by Sigrun Bodine and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-05-26 with Mathematics categories.


This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers in asymptotic integration as well to non-experts who are interested in the asymptotic analysis of linear differential and difference equations. It will additionally be of interest to students in mathematics, applied sciences, and engineering. Linear algebra and some basic concepts from advanced calculus are prerequisites.



Dynamic Inequalities On Time Scales


Dynamic Inequalities On Time Scales
DOWNLOAD
Author : Ravi Agarwal
language : en
Publisher: Springer
Release Date : 2014-10-30

Dynamic Inequalities On Time Scales written by Ravi Agarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-10-30 with Mathematics categories.


This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.



Conformable Dynamic Equations On Time Scales


Conformable Dynamic Equations On Time Scales
DOWNLOAD
Author : Douglas R. Anderson
language : en
Publisher: CRC Press
Release Date : 2020-08-29

Conformable Dynamic Equations On Time Scales written by Douglas R. Anderson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-29 with Mathematics categories.


The concept of derivatives of non-integer order, known as fractional derivatives, first appeared in the letter between L’Hopital and Leibniz in which the question of a half-order derivative was posed. Since then, many formulations of fractional derivatives have appeared. Recently, a new definition of fractional derivative, called the "fractional conformable derivative," has been introduced. This new fractional derivative is compatible with the classical derivative and it has attracted attention in areas as diverse as mechanics, electronics, and anomalous diffusion. Conformable Dynamic Equations on Time Scales is devoted to the qualitative theory of conformable dynamic equations on time scales. This book summarizes the most recent contributions in this area, and vastly expands on them to conceive of a comprehensive theory developed exclusively for this book. Except for a few sections in Chapter 1, the results here are presented for the first time. As a result, the book is intended for researchers who work on dynamic calculus on time scales and its applications. Features Can be used as a textbook at the graduate level as well as a reference book for several disciplines Suitable for an audience of specialists such as mathematicians, physicists, engineers, and biologists Contains a new definition of fractional derivative About the Authors Douglas R. Anderson is professor and chair of the mathematics department at Concordia College, Moorhead. His research areas of interest include dynamic equations on time scales and Ulam-type stability of difference and dynamic equations. He is also active in investigating the existence of solutions for boundary value problems. Svetlin G. Georgiev is currently professor at Sorbonne University, Paris, France and works in various areas of mathematics. He currently focuses on harmonic analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, dynamic calculus on time scales, and integral equations.