[PDF] Dynamic Prediction In Clinical Survival Analysis - eBooks Review

Dynamic Prediction In Clinical Survival Analysis


Dynamic Prediction In Clinical Survival Analysis
DOWNLOAD

Download Dynamic Prediction In Clinical Survival Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamic Prediction In Clinical Survival Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Dynamic Prediction In Clinical Survival Analysis


Dynamic Prediction In Clinical Survival Analysis
DOWNLOAD
Author : Hans van Houwelingen
language : en
Publisher: CRC Press
Release Date : 2011-11-09

Dynamic Prediction In Clinical Survival Analysis written by Hans van Houwelingen and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-11-09 with Mathematics categories.


There is a huge amount of literature on statistical models for the prediction of survival after diagnosis of a wide range of diseases like cancer, cardiovascular disease, and chronic kidney disease. Current practice is to use prediction models based on the Cox proportional hazards model and to present those as static models for remaining lifetime after diagnosis or treatment. In contrast, Dynamic Prediction in Clinical Survival Analysis focuses on dynamic models for the remaining lifetime at later points in time, for instance using landmark models. Designed to be useful to applied statisticians and clinical epidemiologists, each chapter in the book has a practical focus on the issues of working with real life data. Chapters conclude with additional material either on the interpretation of the models, alternative models, or theoretical background. The book consists of four parts: Part I deals with prognostic models for survival data using (clinical) information available at baseline, based on the Cox model Part II is about prognostic models for survival data using (clinical) information available at baseline, when the proportional hazards assumption of the Cox model is violated Part III is dedicated to the use of time-dependent information in dynamic prediction Part IV explores dynamic prediction models for survival data using genomic data Dynamic Prediction in Clinical Survival Analysis summarizes cutting-edge research on the dynamic use of predictive models with traditional and new approaches. Aimed at applied statisticians who actively analyze clinical data in collaboration with clinicians, the analyses of the different data sets throughout the book demonstrate how predictive models can be obtained from proper data sets.



Survival Analysis With Correlated Endpoints


Survival Analysis With Correlated Endpoints
DOWNLOAD
Author : Takeshi Emura
language : en
Publisher:
Release Date : 2019

Survival Analysis With Correlated Endpoints written by Takeshi Emura and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Electronic books categories.


This book introduces readers to advanced statistical methods for analyzing survival data involving correlated endpoints. In particular, it describes statistical methods for applying Cox regression to two correlated endpoints by accounting for dependence between the endpoints with the aid of copulas. The practical advantages of employing copula-based models in medical research are explained on the basis of case studies. In addition, the book focuses on clustered survival data, especially data arising from meta-analysis and multicenter analysis. Consequently, the statistical approaches presented here employ a frailty term for heterogeneity modeling. This brings the joint frailty-copula model, which incorporates a frailty term and a copula, into a statistical model. The book also discusses advanced techniques for dealing with high-dimensional gene expressions and developing personalized dynamic prediction tools under the joint frailty-copula model. To help readers apply the statistical methods to real-world data, the book provides case studies using the authors' original R software package (freely available in CRAN). The emphasis is on clinical survival data, involving time-to-tumor progression and overall survival, collected on cancer patients. Hence, the book offers an essential reference guide for medical statisticians and provides researchers with advanced, innovative statistical tools. The book also provides a concise introduction to basic multivariate survival models.



New Frontiers Of Biostatistics And Bioinformatics


New Frontiers Of Biostatistics And Bioinformatics
DOWNLOAD
Author : Yichuan Zhao
language : en
Publisher: Springer
Release Date : 2018-12-05

New Frontiers Of Biostatistics And Bioinformatics written by Yichuan Zhao and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-05 with Mathematics categories.


This book is comprised of presentations delivered at the 5th Workshop on Biostatistics and Bioinformatics held in Atlanta on May 5-7, 2017. Featuring twenty-two selected papers from the workshop, this book showcases the most current advances in the field, presenting new methods, theories, and case applications at the frontiers of biostatistics, bioinformatics, and interdisciplinary areas. Biostatistics and bioinformatics have been playing a key role in statistics and other scientific research fields in recent years. The goal of the 5th Workshop on Biostatistics and Bioinformatics was to stimulate research, foster interaction among researchers in field, and offer opportunities for learning and facilitating research collaborations in the era of big data. The resulting volume offers timely insights for researchers, students, and industry practitioners.



Survival Analysis With Correlated Endpoints


Survival Analysis With Correlated Endpoints
DOWNLOAD
Author : Takeshi Emura
language : en
Publisher: Springer
Release Date : 2019-03-25

Survival Analysis With Correlated Endpoints written by Takeshi Emura and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-25 with Medical categories.


This book introduces readers to advanced statistical methods for analyzing survival data involving correlated endpoints. In particular, it describes statistical methods for applying Cox regression to two correlated endpoints by accounting for dependence between the endpoints with the aid of copulas. The practical advantages of employing copula-based models in medical research are explained on the basis of case studies. In addition, the book focuses on clustered survival data, especially data arising from meta-analysis and multicenter analysis. Consequently, the statistical approaches presented here employ a frailty term for heterogeneity modeling. This brings the joint frailty-copula model, which incorporates a frailty term and a copula, into a statistical model. The book also discusses advanced techniques for dealing with high-dimensional gene expressions and developing personalized dynamic prediction tools under the joint frailty-copula model. To help readers apply the statistical methods to real-world data, the book provides case studies using the authors’ original R software package (freely available in CRAN). The emphasis is on clinical survival data, involving time-to-tumor progression and overall survival, collected on cancer patients. Hence, the book offers an essential reference guide for medical statisticians and provides researchers with advanced, innovative statistical tools. The book also provides a concise introduction to basic multivariate survival models.



Handbook Of Survival Analysis


Handbook Of Survival Analysis
DOWNLOAD
Author : John P. Klein
language : en
Publisher: CRC Press
Release Date : 2016-04-19

Handbook Of Survival Analysis written by John P. Klein and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Mathematics categories.


Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians



Asymptotic Analysis Of Mixed Effects Models


Asymptotic Analysis Of Mixed Effects Models
DOWNLOAD
Author : Jiming Jiang
language : en
Publisher: CRC Press
Release Date : 2017-09-19

Asymptotic Analysis Of Mixed Effects Models written by Jiming Jiang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-19 with Mathematics categories.


Large sample techniques are fundamental to all fields of statistics. Mixed effects models, including linear mixed models, generalized linear mixed models, non-linear mixed effects models, and non-parametric mixed effects models are complex models, yet, these models are extensively used in practice. This monograph provides a comprehensive account of asymptotic analysis of mixed effects models. The monograph is suitable for researchers and graduate students who wish to learn about asymptotic tools and research problems in mixed effects models. It may also be used as a reference book for a graduate-level course on mixed effects models, or asymptotic analysis.



Hierarchical Modeling And Analysis For Spatial Data Second Edition


Hierarchical Modeling And Analysis For Spatial Data Second Edition
DOWNLOAD
Author : Sudipto Banerjee
language : en
Publisher: CRC Press
Release Date : 2014-09-12

Hierarchical Modeling And Analysis For Spatial Data Second Edition written by Sudipto Banerjee and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-12 with Mathematics categories.


Keep Up to Date with the Evolving Landscape of Space and Space-Time Data Analysis and Modeling Since the publication of the first edition, the statistical landscape has substantially changed for analyzing space and space-time data. More than twice the size of its predecessor, Hierarchical Modeling and Analysis for Spatial Data, Second Edition reflects the major growth in spatial statistics as both a research area and an area of application. New to the Second Edition New chapter on spatial point patterns developed primarily from a modeling perspective New chapter on big data that shows how the predictive process handles reasonably large datasets New chapter on spatial and spatiotemporal gradient modeling that incorporates recent developments in spatial boundary analysis and wombling New chapter on the theoretical aspects of geostatistical (point-referenced) modeling Greatly expanded chapters on methods for multivariate and spatiotemporal modeling New special topics sections on data fusion/assimilation and spatial analysis for data on extremes Double the number of exercises Many more color figures integrated throughout the text Updated computational aspects, including the latest version of WinBUGS, the new flexible spBayes software, and assorted R packages The Only Comprehensive Treatment of the Theory, Methods, and Software This second edition continues to provide a complete treatment of the theory, methods, and application of hierarchical modeling for spatial and spatiotemporal data. It tackles current challenges in handling this type of data, with increased emphasis on observational data, big data, and the upsurge of associated software tools. The authors also explore important application domains, including environmental science, forestry, public health, and real estate.



State Space Methods For Time Series Analysis


State Space Methods For Time Series Analysis
DOWNLOAD
Author : Jose Casals
language : en
Publisher: CRC Press
Release Date : 2018-09-03

State Space Methods For Time Series Analysis written by Jose Casals and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Mathematics categories.


The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors’ E4 MATLAB® toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.



Introduction To High Dimensional Statistics


Introduction To High Dimensional Statistics
DOWNLOAD
Author : Christophe Giraud
language : en
Publisher: CRC Press
Release Date : 2014-12-17

Introduction To High Dimensional Statistics written by Christophe Giraud and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-17 with Business & Economics categories.


Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians



Clinical Prediction Models


Clinical Prediction Models
DOWNLOAD
Author : Ewout W. Steyerberg
language : en
Publisher: Springer
Release Date : 2019-07-22

Clinical Prediction Models written by Ewout W. Steyerberg and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-22 with Medical categories.


The second edition of this volume provides insight and practical illustrations on how modern statistical concepts and regression methods can be applied in medical prediction problems, including diagnostic and prognostic outcomes. Many advances have been made in statistical approaches towards outcome prediction, but a sensible strategy is needed for model development, validation, and updating, such that prediction models can better support medical practice. There is an increasing need for personalized evidence-based medicine that uses an individualized approach to medical decision-making. In this Big Data era, there is expanded access to large volumes of routinely collected data and an increased number of applications for prediction models, such as targeted early detection of disease and individualized approaches to diagnostic testing and treatment. Clinical Prediction Models presents a practical checklist that needs to be considered for development of avalid prediction model. Steps include preliminary considerations such as dealing with missing values; coding of predictors; selection of main effects and interactions for a multivariable model; estimation of model parameters with shrinkage methods and incorporation of external data; evaluation of performance and usefulness; internal validation; and presentation formatting. The text also addresses common issues that make prediction models suboptimal, such as small sample sizes, exaggerated claims, and poor generalizability. The text is primarily intended for clinical epidemiologists and biostatisticians. Including many case studies and publicly available R code and data sets, the book is also appropriate as a textbook for a graduate course on predictive modeling in diagnosis and prognosis. While practical in nature, the book also provides a philosophical perspective on data analysis in medicine that goes beyond predictive modeling. Updates to this new and expanded edition include: • A discussion of Big Data and its implications for the design of prediction models • Machine learning issues • More simulations with missing ‘y’ values • Extended discussion on between-cohort heterogeneity • Description of ShinyApp • Updated LASSO illustration • New case studies