Dynamic Programming And Stochastic Control

DOWNLOAD
Download Dynamic Programming And Stochastic Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamic Programming And Stochastic Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Stochastic Controls
DOWNLOAD
Author : Jiongmin Yong
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Stochastic Controls written by Jiongmin Yong and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.
Optimization Over Time
DOWNLOAD
Author : Peter Whittle
language : en
Publisher:
Release Date : 1983
Optimization Over Time written by Peter Whittle and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1983 with Dynamic programming categories.
Dynamic Programming And Stochastic Control
DOWNLOAD
Author : Bertsekas
language : en
Publisher: Academic Press
Release Date : 1976-11-26
Dynamic Programming And Stochastic Control written by Bertsekas and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1976-11-26 with Computers categories.
Dynamic Programming and Stochastic Control
Stochastic Control Theory
DOWNLOAD
Author : Makiko Nisio
language : en
Publisher: Springer
Release Date : 2014-11-27
Stochastic Control Theory written by Makiko Nisio and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-27 with Mathematics categories.
This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-max principle, to be precise). Using semi-discretization arguments, we construct the nonlinear semigroups whose generators provide lower and upper Isaacs equations. Concerning partially observable control problems, we refer to stochastic parabolic equations driven by colored Wiener noises, in particular, the Zakai equation. The existence and uniqueness of solutions and regularities as well as Itô's formula are stated. A control problem for the Zakai equations has a nonlinear semigroup whose generator provides the HJB equation on a Banach space. The value function turns out to be a unique viscosity solution for the HJB equation under mild conditions. This edition provides a more generalized treatment of the topic than does the earlier book Lectures on Stochastic Control Theory (ISI Lecture Notes 9), where time-homogeneous cases are dealt with. Here, for finite time-horizon control problems, DPP was formulated as a one-parameter nonlinear semigroup, whose generator provides the HJB equation, by using a time-discretization method. The semigroup corresponds to the value function and is characterized as the envelope of Markovian transition semigroups of responses for constant control processes. Besides finite time-horizon controls, the book discusses control-stopping problems in the same frameworks.
Dynamic Programming And Stochastic Control
DOWNLOAD
Author : Dimitri P. Bertsekas
language : it
Publisher:
Release Date : 1976
Dynamic Programming And Stochastic Control written by Dimitri P. Bertsekas and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1976 with categories.
Optimization Over Time
DOWNLOAD
Author : Peter Whittle
language : en
Publisher:
Release Date : 1992
Optimization Over Time written by Peter Whittle and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1992 with categories.
Numerical Methods For Stochastic Control Problems In Continuous Time
DOWNLOAD
Author : Harold Kushner
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Numerical Methods For Stochastic Control Problems In Continuous Time written by Harold Kushner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.
This book is concerned with numerical methods for stochastic control and optimal stochastic control problems. The random process models of the controlled or uncontrolled stochastic systems are either diffusions or jump diffusions. Stochastic control is a very active area of research and new prob lem formulations and sometimes surprising applications appear regularly. We have chosen forms of the models which cover the great bulk of the for mulations of the continuous time stochastic control problems which have appeared to date. The standard formats are covered, but much emphasis is given to the newer and less well known formulations. The controlled process might be either stopped or absorbed on leaving a constraint set or upon first hitting a target set, or it might be reflected or "projected" from the boundary of a constraining set. In some of the more recent applications of the reflecting boundary problem, for example the so-called heavy traffic approximation problems, the directions of reflection are actually discontin uous. In general, the control might be representable as a bounded function or it might be of the so-called impulsive or singular control types. Both the "drift" and the "variance" might be controlled. The cost functions might be any of the standard types: Discounted, stopped on first exit from a set, finite time, optimal stopping, average cost per unit time over the infinite time interval, and so forth.
Numerical Methods For Stochastic Control Problems In Continuous Time
DOWNLOAD
Author : Harold J. Kushner
language : en
Publisher: Springer Science & Business Media
Release Date : 2001
Numerical Methods For Stochastic Control Problems In Continuous Time written by Harold J. Kushner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Language Arts & Disciplines categories.
The required background is surveyed, and there is an extensive development of methods of approximation and computational algorithms. The book is written on two levels: algorithms and applications, and mathematical proofs. Thus, the ideas should be very accessible to a broad audience."--BOOK JACKET.
Optimal Stochastic Control Stochastic Target Problems And Backward Sde
DOWNLOAD
Author : Nizar Touzi
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-09-27
Optimal Stochastic Control Stochastic Target Problems And Backward Sde written by Nizar Touzi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-27 with Mathematics categories.
This book collects some recent developments in stochastic control theory with applications to financial mathematics. We first address standard stochastic control problems from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on the regularity issues and, in particular, on the behavior of the value function near the boundary. We then provide a quick review of the main tools from viscosity solutions which allow to overcome all regularity problems. We next address the class of stochastic target problems which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows. Namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging. The third part specializes to an overview of Backward stochastic differential equations, and their extensions to the quadratic case.
Stochastic Optimal Control In Infinite Dimension
DOWNLOAD
Author : Giorgio Fabbri
language : en
Publisher: Springer
Release Date : 2017-06-22
Stochastic Optimal Control In Infinite Dimension written by Giorgio Fabbri and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-22 with Mathematics categories.
Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.