Econometrics With Machine Learning

DOWNLOAD
Download Econometrics With Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Econometrics With Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes
DOWNLOAD
Author : Cheng Few Lee
language : en
Publisher: World Scientific
Release Date : 2020-07-30
Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes written by Cheng Few Lee and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-30 with Business & Economics categories.
This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.
Econometrics With Machine Learning
DOWNLOAD
Author : Felix Chan
language : en
Publisher: Springer
Release Date : 2022-09-08
Econometrics With Machine Learning written by Felix Chan and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-08 with Business & Economics categories.
This book helps and promotes the use of machine learning tools and techniques in econometrics and explains how machine learning can enhance and expand the econometrics toolbox in theory and in practice. Throughout the volume, the authors raise and answer six questions: 1) What are the similarities between existing econometric and machine learning techniques? 2) To what extent can machine learning techniques assist econometric investigation? Specifically, how robust or stable is the prediction from machine learning algorithms given the ever-changing nature of human behavior? 3) Can machine learning techniques assist in testing statistical hypotheses and identifying causal relationships in ‘big data? 4) How can existing econometric techniques be extended by incorporating machine learning concepts? 5) How can new econometric tools and approaches be elaborated on based on machine learning techniques? 6) Is it possible to develop machine learning techniques further and make them even more readily applicable in econometrics? As the data structures in economic and financial data become more complex and models become more sophisticated, the book takes a multidisciplinary approach in developing both disciplines of machine learning and econometrics in conjunction, rather than in isolation. This volume is a must-read for scholars, researchers, students, policy-makers, and practitioners, who are using econometrics in theory or in practice.
Machine Learning Techniques In Economics
DOWNLOAD
Author : Atin Basuchoudhary
language : en
Publisher: Springer
Release Date : 2017-12-28
Machine Learning Techniques In Economics written by Atin Basuchoudhary and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-28 with Business & Economics categories.
This book develops a machine-learning framework for predicting economic growth. It can also be considered as a primer for using machine learning (also known as data mining or data analytics) to answer economic questions. While machine learning itself is not a new idea, advances in computing technology combined with a dawning realization of its applicability to economic questions makes it a new tool for economists.
Applied Econometrics With R
DOWNLOAD
Author : Christian Kleiber
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-10
Applied Econometrics With R written by Christian Kleiber and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-10 with Business & Economics categories.
R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Classification And Regression Trees
DOWNLOAD
Author : Leo Breiman
language : en
Publisher: Routledge
Release Date : 2017-10-19
Classification And Regression Trees written by Leo Breiman and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-19 with Mathematics categories.
The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.
The Economics Of Artificial Intelligence
DOWNLOAD
Author : Ajay Agrawal
language : en
Publisher: University of Chicago Press
Release Date : 2024-03-14
The Economics Of Artificial Intelligence written by Ajay Agrawal and has been published by University of Chicago Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-14 with Business & Economics categories.
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
Machine Learning For Econometrics And Related Topics
DOWNLOAD
Author : Vladik Kreinovich
language : en
Publisher: Springer Nature
Release Date : 2024-06-01
Machine Learning For Econometrics And Related Topics written by Vladik Kreinovich and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-01 with Technology & Engineering categories.
In the last decades, machine learning techniques – especially techniques of deep learning – led to numerous successes in many application areas, including economics. The use of machine learning in economics is the main focus of this book; however, the book also describes the use of more traditional econometric techniques. Applications include practically all major sectors of economics: agriculture, health (including the impact of Covid-19), manufacturing, trade, transportation, etc. Several papers analyze the effect of age, education, and gender on economy – and, more generally, issues of fairness and discrimination. We hope that this volume will: help practitioners to become better knowledgeable of the state-of-the-art econometric techniques, especially techniques of machine learning, and help researchers to further develop these important research directions. We want to thank all the authors for their contributions and all anonymous referees for their thorough analysis and helpful comments.
Econometrics And Data Science
DOWNLOAD
Author : Tshepo Chris Nokeri
language : en
Publisher:
Release Date : 2022
Econometrics And Data Science written by Tshepo Chris Nokeri and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.
Get up to speed on the application of machine learning approaches in macroeconomic research. This book brings together economics and data science. Author Tshepo Chris Nokeri begins by introducing you to covariance analysis, correlation analysis, cross-validation, hyperparameter optimization, regression analysis, and residual analysis. In addition, he presents an approach to contend with multi-collinearity. He then debunks a time series model recognized as the additive model. He reveals a technique for binarizing an economic feature to perform classification analysis using logistic regression. He brings in the Hidden Markov Model, used to discover hidden patterns and growth in the world economy. The author demonstrates unsupervised machine learning techniques such as principal component analysis and cluster analysis. Key deep learning concepts and ways of structuring artificial neural networks are explored along with training them and assessing their performance. The Monte Carlo simulation technique is applied to stimulate the purchasing power of money in an economy. Lastly, the Structural Equation Model (SEM) is considered to integrate correlation analysis, factor analysis, multivariate analysis, causal analysis, and path analysis. After reading this book, you should be able to recognize the connection between econometrics and data science. You will know how to apply a machine learning approach to modeling complex economic problems and others beyond this book. You will know how to circumvent and enhance model performance, together with the practical implications of a machine learning approach in econometrics, and you will be able to deal with pressing economic problems. What You Will Learn Examine complex, multivariate, linear-causal structures through the path and structural analysis technique, including non-linearity and hidden states Be familiar with practical applications of machine learning and deep learning in econometrics Understand theoretical framework and hypothesis development, and techniques for selecting appropriate models Develop, test, validate, and improve key supervised (i.e., regression and classification) and unsupervised (i.e., dimension reduction and cluster analysis) machine learning models, alongside neural networks, Markov, and SEM models Represent and interpret data and models .
Time Series Econometrics
DOWNLOAD
Author : John D. Levendis
language : en
Publisher: Springer
Release Date : 2019-01-31
Time Series Econometrics written by John D. Levendis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Business & Economics categories.
In this book, the author rejects the theorem-proof approach as much as possible, and emphasize the practical application of econometrics. They show with examples how to calculate and interpret the numerical results. This book begins with students estimating simple univariate models, in a step by step fashion, using the popular Stata software system. Students then test for stationarity, while replicating the actual results from hugely influential papers such as those by Granger and Newbold, and Nelson and Plosser. Readers will learn about structural breaks by replicating papers by Perron, and Zivot and Andrews. They then turn to models of conditional volatility, replicating papers by Bollerslev. Finally, students estimate multi-equation models such as vector autoregressions and vector error-correction mechanisms, replicating the results in influential papers by Sims and Granger. The book contains many worked-out examples, and many data-driven exercises. While intended primarily for graduate students and advanced undergraduates, practitioners will also find the book useful.
Predictive Econometrics And Big Data
DOWNLOAD
Author : Vladik Kreinovich
language : en
Publisher: Springer
Release Date : 2017-11-30
Predictive Econometrics And Big Data written by Vladik Kreinovich and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-30 with Technology & Engineering categories.
This book presents recent research on predictive econometrics and big data. Gathering edited papers presented at the 11th International Conference of the Thailand Econometric Society (TES2018), held in Chiang Mai, Thailand, on January 10-12, 2018, its main focus is on predictive techniques – which directly aim at predicting economic phenomena; and big data techniques – which enable us to handle the enormous amounts of data generated by modern computers in a reasonable time. The book also discusses the applications of more traditional statistical techniques to econometric problems. Econometrics is a branch of economics that employs mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. It is therefore important to develop data processing techniques that explicitly focus on prediction. The more data we have, the better our predictions will be. As such, these techniques are essential to our ability to process huge amounts of available data.