Electromagnetic Analysis And Design In Magnetic Resonance Imaging


Electromagnetic Analysis And Design In Magnetic Resonance Imaging
DOWNLOAD

Download Electromagnetic Analysis And Design In Magnetic Resonance Imaging PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Electromagnetic Analysis And Design In Magnetic Resonance Imaging book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Electromagnetic Analysis And Design In Magnetic Resonance Imaging


Electromagnetic Analysis And Design In Magnetic Resonance Imaging
DOWNLOAD

Author : Jianming Jin
language : en
Publisher: Routledge
Release Date : 2018-02-06

Electromagnetic Analysis And Design In Magnetic Resonance Imaging written by Jianming Jin and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-06 with Medical categories.


This book presents a comprehensive treatment of electromagnetic analysis and design of three critical devices for an MRI system - the magnet, gradient coils, and radiofrequency (RF) coils. Electromagnetic Analysis and Design in Magnetic Resonance Imaging is unique in its detailed examination of the analysis and design of the hardware for an MRI system. It takes an engineering perspective to serve the many scientists and engineers in this rapidly expanding field. Chapters present: an introduction to MRI basic concepts of electromagnetics, including Helmholtz and Maxwell coils, inductance calculation, and magnetic fields produced by special cylindrical and spherical surface currents principles for the analysis and design of gradient coils, including discrete wires and the target field method analysis of RF coils based on the equivalent lumped-circuit model as well as an analysis based on the integral equation formulation survey of special purpose RF coils analytical and numerical methods for the analysis of electromagnetic fields in biological objects With the continued, active development of MRI instrumentation, Electromagnetic Analysis and Design in Magnetic Resonance Imaging presents an excellent, logically organized text - an indispensable resource for engineers, physicists, and graduate students working in the field of MRI.



Electromagnetic Analysis And Design In Magnetic Resonance Imaging


Electromagnetic Analysis And Design In Magnetic Resonance Imaging
DOWNLOAD

Author : Jian-Ming Jin
language : en
Publisher:
Release Date : 1999

Electromagnetic Analysis And Design In Magnetic Resonance Imaging written by Jian-Ming Jin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999 with HEALTH & FITNESS categories.


With the continued, active development of MRI instrumentation, Electromagnetic Analysis and Design in Magnetic Resonance Imaging presents an excellent, logically organized text - an indispensable resource for engineers, physicists, and graduate students working in the field of MRI as well as electrical engineers seeking a better understanding of the hardware for an MRI system.



Theory And Computation Of Electromagnetic Fields


Theory And Computation Of Electromagnetic Fields
DOWNLOAD

Author : Jian-Ming Jin
language : en
Publisher: John Wiley & Sons
Release Date : 2015-09-15

Theory And Computation Of Electromagnetic Fields written by Jian-Ming Jin and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-15 with Science categories.


Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.



Electromagnetic Analysis And Design In Magnetic Resonance Imaging


Electromagnetic Analysis And Design In Magnetic Resonance Imaging
DOWNLOAD

Author : Jianming Jin
language : en
Publisher: Routledge
Release Date : 2018-02-06

Electromagnetic Analysis And Design In Magnetic Resonance Imaging written by Jianming Jin and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-06 with Medical categories.


This book presents a comprehensive treatment of electromagnetic analysis and design of three critical devices for an MRI system - the magnet, gradient coils, and radiofrequency (RF) coils. Electromagnetic Analysis and Design in Magnetic Resonance Imaging is unique in its detailed examination of the analysis and design of the hardware for an MRI system. It takes an engineering perspective to serve the many scientists and engineers in this rapidly expanding field. Chapters present: an introduction to MRI basic concepts of electromagnetics, including Helmholtz and Maxwell coils, inductance calculation, and magnetic fields produced by special cylindrical and spherical surface currents principles for the analysis and design of gradient coils, including discrete wires and the target field method analysis of RF coils based on the equivalent lumped-circuit model as well as an analysis based on the integral equation formulation survey of special purpose RF coils analytical and numerical methods for the analysis of electromagnetic fields in biological objects With the continued, active development of MRI instrumentation, Electromagnetic Analysis and Design in Magnetic Resonance Imaging presents an excellent, logically organized text - an indispensable resource for engineers, physicists, and graduate students working in the field of MRI.



The Finite Element Method In Electromagnetics


The Finite Element Method In Electromagnetics
DOWNLOAD

Author : Jian-Ming Jin
language : en
Publisher: John Wiley & Sons
Release Date : 2015-02-18

The Finite Element Method In Electromagnetics written by Jian-Ming Jin and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-02-18 with Science categories.


A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.



Electromagnetics In Magnetic Resonance Imaging


Electromagnetics In Magnetic Resonance Imaging
DOWNLOAD

Author : Christopher M. Collins
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2016-03-01

Electromagnetics In Magnetic Resonance Imaging written by Christopher M. Collins and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-01 with Medical categories.


In the past few decades, Magnetic Resonance Imaging (MRI) has become an indispensable tool in modern medicine, with MRI systems now available at every major hospital in the developed world. But for all its utility and prevalence, it is much less commonly understood and less readily explained than other common medical imaging techniques. Unlike optical, ultrasonic, X-ray (including CT), and nuclear medicine-based imaging, MRI does not rely primarily on simple transmission and/or reflection of energy, and the highest achievable resolution in MRI is orders of magnitude smaller that the smallest wavelength involved. In this book, MRI will be explained with emphasis on the magnetic fields required, their generation, their concomitant electric fields, the various interactions of all these fields with the subject being imaged, and the implications of these interactions to image quality and patient safety. Classical electromagnetics will be used to describe aspects from the fundamental phenomenon of nuclear precession through signal detection and MRI safety. Simple explanations and Illustrations combined with pertinent equations are designed to help the reader rapidly gain a fundamental understanding and an appreciation of this technology as it is used today, as well as ongoing advances that will increase its value in the future. Numerous references are included to facilitate further study with an emphasis on areas most directly related to electromagnetics.



Magnetic Resonance Technology


Magnetic Resonance Technology
DOWNLOAD

Author : Andrew G Webb
language : en
Publisher: Royal Society of Chemistry
Release Date : 2016-05-11

Magnetic Resonance Technology written by Andrew G Webb and has been published by Royal Society of Chemistry this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-11 with Medical categories.


Magnetic resonance systems are used in almost every academic and industrial chemistry, physics and biochemistry department, as well as being one of the most important imaging modalities in clinical radiology. The design of such systems has become increasingly sophisticated over the years. Static magnetic fields increase continuously, large-scale arrays of receive elements are now ubiquitous in clinical MRI, cryogenic technology has become commonplace in high resolution NMR and is expanding rapidly in preclinical MRI, specialized high strength magnetic field gradients have been designed for studying the human connectome, and the commercial advent of ultra-high field human imaging has required new types of RF coils and static shim coils together with extensive electromagnetic simulations to ensure patient safety. This book covers the hardware and engineering that constitutes a magnetic resonance system, whether that be a high-resolution liquid or solid state system for NMR spectroscopy, a preclinical system for imaging animals or a clinical system used for human imaging. Written by a team of experts in the field, this book provides a comprehensive and instructional look at all aspects of current magnetic resonance technology, as well as outlooks for future developments.



Magnetic Resonance Imaging


Magnetic Resonance Imaging
DOWNLOAD

Author : Vadim Kuperman
language : en
Publisher: Elsevier
Release Date : 2000-03-15

Magnetic Resonance Imaging written by Vadim Kuperman and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-03-15 with Science categories.


This book is intended as a text/reference for students, researchers, and professors interested in physical and biomedical applications of Magnetic Resonance Imaging (MRI). Both the theoretical and practical aspects of MRI are emphasized. The book begins with a comprehensive discussion of the Nuclear Magnetic Resonance (NMR) phenomenon based on quantum mechanics and the classical theory of electromagnetism. The first three chapters of this book provide the foundation needed to understand the basic characteristics of MR images, e.g.,image contrast, spatial resolution, signal-to-noise ratio, common image artifacts. Then MRI applications are considered in the following five chapters. Both the theoretical and practical aspects of MRI are emphasized. The book ends with a discussion of instrumentation and the principles of signal detection in MRI. Clear progression from fundamental physical principles of NMR to MRI and its applications Extensive discussion of image acquisition and reconstruction of MRI Discussion of different mechanisms of MR image contrast Mathematical derivation of the signal-to-noise dependence on basic MR imaging parameters as well as field strength In-depth consideration of artifacts in MR images Comprehensive discussion of several techniques used for rapid MR imaging including rapid gradient-echo imaging, echo-planar imaging, fast spin-echo imaging and spiral imaging Qualitative discussion combined with mathematical description of MR techniques for imaging flow



Ultra High Field Magnetic Resonance Imaging


Ultra High Field Magnetic Resonance Imaging
DOWNLOAD

Author : Pierre-Marie Robitaille
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-12-31

Ultra High Field Magnetic Resonance Imaging written by Pierre-Marie Robitaille and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-12-31 with Medical categories.


The foundation for understanding the function and dynamics of biological systems is not only knowledge of their structure, but the new methodologies and applications used to determine that structure. This volume in Biological Magnetic Resonance emphasizes the methods that involve Ultra High Field Magnetic Resonance Imaging. It will interest researchers working in the field of imaging.



Magnetic Resonance Imaging


Magnetic Resonance Imaging
DOWNLOAD

Author : Robert W. Brown
language : en
Publisher: John Wiley & Sons
Release Date : 2014-05-02

Magnetic Resonance Imaging written by Robert W. Brown and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-02 with Medical categories.


New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.