Electron Correlations And Materials Properties


Electron Correlations And Materials Properties
DOWNLOAD

Download Electron Correlations And Materials Properties PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Electron Correlations And Materials Properties book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Electron Correlations And Materials Properties 2


Electron Correlations And Materials Properties 2
DOWNLOAD

Author : A. Gonis
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Electron Correlations And Materials Properties 2 written by A. Gonis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Science categories.


This is the second in a series of "International Workshops on Electron Correlations and Materials Properties. " The aim of this series of workshops is to provide a periodic (triennial) and in-depth assessment of advances in the study and understanding of the effects that electron-electron interactions in solids have on the determination of measurable properties of materials. The workshop is structured to include exposure to experimental work, to phenomenology, and to ab initio theory. Since correlation effects are pervasive the workshop aims to concentrate on the identification of promising developing methodology, experimental and theoretical, addressing the most critical frontier issues of electron correlations on the properties of materials. This series of workshops is distinguished from other topical meetings and conferences in that it strongly promotes an interdisciplinary approach to the study of correlations, involving the fields of quantum chemistry, physics, and materials science. The First Workshop was held June 28-July 3, 1998, and a proceedings of the workshop was published by KluwerlPlenum. The Second Workshop was held June 24- 29,2001, and this volume contains the proceedings of that scientific meeting. Through the publications of proceedings, the workshop attempts to disseminate the information gathered during the discussions held at the Workshop to the wider scientific community, and to establish a record of advances in the field.



Electron Correlations And Materials Properties


Electron Correlations And Materials Properties
DOWNLOAD

Author :
language : en
Publisher:
Release Date : 2006

Electron Correlations And Materials Properties written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with categories.




Electron Correlations And Materials Properties


Electron Correlations And Materials Properties
DOWNLOAD

Author : A Gonis
language : en
Publisher:
Release Date : 1999-11-30

Electron Correlations And Materials Properties written by A Gonis and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-11-30 with categories.


This volume contains the proceedings of the Second International Workshop on Electron Correlations and Materials Properties. The aim of this series of workshops is to provide a periodic (triennial) and in-depth assessment of advances in the study and understanding of the effects that electron-electron interactions in solids have on the determination of measurable properties of materials. The workshop is structured to include exposure to experimental work, to phenomenology, and to ab initio theory. Since correlation effects are pervasive the workshop aims to concentrate on the identification of promising developing methodology, experimental and theoretical, addressing the most critical frontier issues of electron correlations on the properties of materials. This series of workshops is distinguished from other topical meetings and conferences in that it strongly promotes an interdisciplinary approach to the study of correlations, involving the fields of quantum chemistry, physics, and materials science.



Electron Correlation In New Materials And Nanosystems


Electron Correlation In New Materials And Nanosystems
DOWNLOAD

Author : Kurt Scharnberg
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-05-24

Electron Correlation In New Materials And Nanosystems written by Kurt Scharnberg and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-24 with Science categories.


The articles collected in this book cover a wide range of materials with extraordinary superconducting and magnetic properties. For many of the materials studied, strong electronic correlations provide a link between these two phenomena which were long thought to be highly antagonistic. The book reports both the progress in our understanding of fundamental physical processes and the advances made towards the development of devices.



Strong Coulomb Correlations In Electronic Structure Calculations


Strong Coulomb Correlations In Electronic Structure Calculations
DOWNLOAD

Author : Vladimir I Anisimov
language : en
Publisher: CRC Press
Release Date : 2000-05-30

Strong Coulomb Correlations In Electronic Structure Calculations written by Vladimir I Anisimov and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-05-30 with Science categories.


Materials where electrons show nearly localized rather than itinerant behaviour, such as the high-temperature superconducting copper oxides, or manganate oxides, are attracting interest due to their physical properties and potential applications. For these materials, the interaction between electrons, or electron correlation, plays an important rol



Electronic Structure Correlation Effects And Physical Properties Of D And F Metals And Their Compounds


Electronic Structure Correlation Effects And Physical Properties Of D And F Metals And Their Compounds
DOWNLOAD

Author : Valentin Yu Irkhin
language : en
Publisher: Cambridge Int Science Publishing
Release Date : 2007

Electronic Structure Correlation Effects And Physical Properties Of D And F Metals And Their Compounds written by Valentin Yu Irkhin and has been published by Cambridge Int Science Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Science categories.


The book includes all main physical properties of d- and f-transition-metal systems and corresponding theoretical concepts. Special attention is paid to the theory of magnetism and transport phenomena. Some examples of non-traditional questions which are treated in detail in the book: the influence of density of states singularities on electron properties; many-electron description of strong itinerant magnetism; mechanisms of magnetic anisotropy; microscopic theory of anomalous transport phenomena in ferromagnets. Besides considering classical problems of solid state physics as applied to transition metals, modern developments in the theory of correlation effects in d- and f-compounds are considered within many-electron models. The book contains, where possible, a simple physical discussion. More difficult questions are considered in Appendices.



Electronic Transitions And Correlation Effects


Electronic Transitions And Correlation Effects
DOWNLOAD

Author : Johan Jönsson
language : en
Publisher: Linköping University Electronic Press
Release Date : 2020-03-17

Electronic Transitions And Correlation Effects written by Johan Jönsson and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-17 with categories.


Macroscopic properties of real materials, such as conductivity, magneticproperties, crystal structure parameters, etc. are closely related or evendetermined by the configuration of their electrons, characterized by electronicstructure. By changing the conditions, e.g, pressure, temperature, magnetic/electric field, chemical doping, etc. one can modify the electronic structure ofsolids and therefore induce a phase transition(s) between different electronic andmagnetic states. One famous example is a Mott metal-to-insulator phase transition,at which a material undergoes a significant, often many orders of magnitude, changeof conductivity caused by the interplay between itineracy and localization of thecarriers. Electronic topological transitions (ETT) involvechanges in the topology of a metal's Fermi surface. This thesis investigates theeffect of such electronic transitions in various materials, ranging from pureelements to complex compounds. To describe the interplay between electronic transitionsand properties of real materials,different state-of-the-art computational methods are used. The densityfunctional theory(DFT), as well as the DFT + U method, is used to calculatestructural properties. The validity of recently introduced exchange-correlationfunctionals, such as the strongly constrained and appropriately normed (SCAN)functional, is also assessed for magnetic elements. In order toinclude dynamical effects of electron interactions we use the DFT + dynamical meanfield theory (DFT + DMFT) method. Experiments in hcp-Os have reported peculiarities in the ratio betweenlattice parameters at high pressure. Previous calculations have suggested these transitions maybe related to ETTs and even crossings of core levels at ultra high pressure. Inthis thesis it is shownthat the crossing of core levels is a general feature of heavy transitionmetals. Experiments have therefore been performed to look for indications ofthis transition in Ir using X-ray absorption spectroscopy. In NiO, strongrepulsion between electrons leads to a Mott insulating state at ambientconditions. It has long been predicted that high pressure will lead to aninsulator-to-metal transition. This has been suggested to be accompanied by aloss of magnetic order, and a structural phase transition. In collaboration withexperimentalists we look for thistransition by investigating the X-ray absorption spectra as well as themagnetic hyperfine field. We find no evidence of a Mott transition up to 280GPa. In the Mott insulator TiPO4, application of external pressure has beensuggested to lead to a spin-Peierls transition at room temperature. Weinvestigate the dimerisation and the magnetic structure of TiPO4 at high pressure.As pressure is increased further, TiPO4 goes through a metal to insulatortransition before an eventual crystallographic phase transition. Remarkably, thenew high pressure phases are found to be insulators; the Mott insulating stateis restored. MAX phases are layered materials that combinemetallic and ceramic properties and feature layers of M-metal and X-C or N atomsinterconnected by A-group atoms. Magnetic MAX-phases with their low dimensionalmagnetism are promising candidates for applications in e.g., spintronics.The validity of various theoretical approaches are discussed in connection tothe magnetic MAX-phase Mn2GaC. Using DFT and DFT + DMFT we consider the hightemperature paramagnetic state, and whether the magnetic moments are formed bylocalized or itinerant electrons. Ett materials makroskopiska egenskaper, såsom ledningsförmåga, magnetiska egenskaper, kristallstrukturparametrar, etc. är relaterade till, eller till och med bestämda av elektronernas konfiguration, vilken karakteriseras av elektronstrukturen. Genom att ändra förhållandena, till exempel via tryck, temperatur, magnetiska och/eller elektriska fält, dopning, etc. är det möjligt att modifiera elektronstrukturen hos ett material, och därigenom inducera fasövergångar mellan olika magnetiska och elektron-tillstånd. Mott metall-till-isolator övergången är ett berömt exempel på en fasövergång, då ett material genomgår en omfattande, ofta flera tiopotenser, förändring i ledningsförmåga, orsakad av samspelet mellan ambulerande och lokaliserade laddningsbärare. Vid en elektronisk-topologisk övergång (eng. electronic topological transition, ETT) sker förändringar i elektronernas energifördelning vilket modifierar materialets Fermi-yta. I den här avhandlingen undersöks dylika övergångar i olika material, från rena grundämnen till komplicerade föreningar. Flera olika toppmoderna beräkningsmetoder används för att redogöra för samspelet mellan elektroniska fasövergångar och egenskaper hos riktiga material. Täthetsfunktionalterori (eng. density functional theory, DFT), samt DFT + U, har används för att beräkna strukturella egenskaper. Lämplighetsgraden i att använda nyligen publicerade exchangecorrelation- funktionaler, såsom SCAN (eng. strongly constrained and appropriately normed), för att beskriva magnetiska grundämnen undersöks även. För att inkludera dynamiska elektronkorrelationer använder vi metoden DFT + dynamisk medelfältteori (eng. dynamical mean field theory, DMFT). Experiment utförda på hcp-Os vid högt tryck visar underliga hopp i kvoten mellan gitterparametrar. Tidigare beräkningar har indikerat att dessa övergångar kan vara relaterade till elektronisk-topologiska övergångar och korsande av kärntillstånd. I den här avhandlingen visas också att korsning av kärntillstånden är en generell egenskap hos tunga övergångsmetaller. Därför utförs röntgenabsorptionsexperiment på Ir för att leta efter tecken på denna typ av övergång. Övergångsmetalloxiden NiO har sedan länge förutspåtts genomgå en isolator till metall Mott-övergång. Det har föreslagits att denna övergång sker vid höga tryck i samband med att materialets magnetiska ordning försvinner och en strukturell övergång sker. I samarbete med experimentalister letar vi efter denna övergång genom att studera röntgenabsorptionsspektra och det magnetiska hyperfina fältet. Vi ser inga indikationer på en Mott-övegång, upp till ett tryck på 280 GPa. Det har föreslagits att Mott-isolatorn TiPO4 genomgår en så kallad spin-Peierls-övergång, vid rumstemperatur, när tryck appliceras. Vi undersöker dimeriseringen och den magnetiska strukturen i TiPO4 som funktion av tryck. Vid höga tryck genomgår TiPO4 ytterligare övergångar, från en isolerande till en metallisk fas för att slutligen genomgå en strukturell övergång. De nya högtrycksfaserna visar sig anmärkningsvärt vara Mott-isolatorer. MAX-faser är en grupp material med specifik kristallstruktur, som kombinerar egenskaper från keramiska material och metaller. En MAX-fas består av lager av M –metall-atomer – och X – kol- eller kväveatomer – vilka sammanbinds av atomer från grupp A. Magnetiska MAX-faser som visar magnetiska egenskaper, liknande de för lågdimensionella material, är lovande kandidater för applikation inom exempelvis spinntronik. Den här avhandlingen undersöker lämplighetsgraden i att använda diverse teoretiska metoder för att beskriva magnetiska MAX-faser. Med hjälp av DFT och DFT + DMFT undersöker vi den paramagnetiska högtemperaturfasen och huruvida de magnetiska momenten bildas av lokaliserade eller ambulerande elektroner.



Electron Electron Correlation Effects In Low Dimensional Conductors And Superconductors


Electron Electron Correlation Effects In Low Dimensional Conductors And Superconductors
DOWNLOAD

Author : Alexandr A. Ovchinnikov
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Electron Electron Correlation Effects In Low Dimensional Conductors And Superconductors written by Alexandr A. Ovchinnikov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.


Advances in the physics and chemistry of low-dimensional systems have been really magnificent in the last few decades. Hundreds of quasi-one-dimensional and quasi-two-dimensional systems have been synthesized and studied. The most popular representatives of quasi-one-dimensional materials are polyacethylenes CH [1] and conducting donor-acceptor molecular crystals TIF z TCNQ. Examples of quasi-two-dimensional systems are high temperature su perconductors (HTSC) based on copper oxides LA2CU04, YBa2Cu306+y and organic superconductors based on BEDT -TIP molecules. The properties of such one- and two-dimensional materials are not yet fully understood. On the one hand, the equations of motion of one-dimensional sys tems are rather simple, which facilitates rigorous solutions of model problems. On the other hand, manifestations of various interactions in one-dimensional systems are rather peculiar. This refers, in particular, to electron--electron and electron-phonon interactions. Even within the limit of a weak coupling con stant electron--electron correlations produce an energy gap in the spectrum of one-dimensional metals implying a Mott transition from metal to semiconductor state. In all these cases perturbation theory is inapplicable. Which is one of the main difficulties on the way towards a comprehensive theory of quasi-one-dimensional systems. - This meeting held at the Institute for Theoretical Physics in Kiev May 15-18 1990 was devoted to related problems. The papers selected for this volume are grouped into three sections.



Electron Correlations In The Solid State


Electron Correlations In The Solid State
DOWNLOAD

Author : Norman H March
language : en
Publisher: World Scientific Publishing Company
Release Date : 1999-12-13

Electron Correlations In The Solid State written by Norman H March and has been published by World Scientific Publishing Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-12-13 with Science categories.


This invaluable book deals with the many-electron theory of the solid state. Mastery of the material in it will equip the reader for research in areas such as high-temperature superconductors and the fractional quantum Hall effect. The whole book has been designed to provide the diligent reader with a wide variety of approaches to many-electron theory.The level of the book is suitable for research workers and higher-degree students in a number of disciplines, embracing theoretical physics, materials science and solid-state chemistry. It should be useful not only to theorists in these areas but also to experimental scientists who desire to orient their programmes to address outstanding questions raised by many-body theory.



Concepts In Electron Correlation


Concepts In Electron Correlation
DOWNLOAD

Author : Alex C. Hewson
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Concepts In Electron Correlation written by Alex C. Hewson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.


The NATO sponsored Advanced Research Workshop on "Concepts in Electron Correlation" took place on the Croatian island of Hvar during the period from the 29th of September to the 3rd of October, 2002. The topic of electron correlation is a fundamental one in the field of condensed matter, and one that is being very actively studied both experimentally and theoretically at the present time. The manifestations of electron cor relation are diverse, and play an important role in systems ranging from high temperature superconductors, heavy fermions, manganite compounds with colossal magnetoresistance, transition metal compounds with metal insulator transitions, to mesoscopic systems and quantum dots. The aim of the workshop was to provide an opportunity for a dialogue between exper imentalists and theoreticians to assess the current state of understanding, and to set an agenda for future work. There was also a follow-up workshop on the same topic where the presentations included more background and introductory material for younger researchers in the field. The papers presented in these proceedings clearly demonstrate the di versity of current research on electron correlation. They show that real progress is being made in characterising systems experimentally and in developing theoretical approaches for a quantitative comparison with ex periment. The more one learns, however, the more there is to understand, and many of the contributions help to map out the territory which has yet to be explored. We hope that the articles in this volume will be a stimulus for such future work.