[PDF] Elementary Topics In Differential Geometry - eBooks Review

Elementary Topics In Differential Geometry


Elementary Topics In Differential Geometry
DOWNLOAD

Download Elementary Topics In Differential Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Elementary Topics In Differential Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Elementary Topics In Differential Geometry


Elementary Topics In Differential Geometry
DOWNLOAD
Author : J. A. Thorpe
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Elementary Topics In Differential Geometry written by J. A. Thorpe and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.



Elementary Differential Geometry


Elementary Differential Geometry
DOWNLOAD
Author : A.N. Pressley
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11

Elementary Differential Geometry written by A.N. Pressley and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.


Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood. Differential geometry is concerned with the precise mathematical formulation of some of these questions, and with trying to answer them using calculus techniques. It is a subject that contains some of the most beautiful and profound results in mathematics yet many of these are accessible to higher-level undergraduates. Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces while keeping the prerequisites to an absolute minimum. Nothing more than first courses in linear algebra and multivariate calculus are required, and the most direct and straightforward approach is used at all times. Numerous diagrams illustrate both the ideas in the text and the examples of curves and surfaces discussed there. The book will provide an invaluable resource to all those taking a first course in differential geometry, for their lecturers, and for all others interested in the subject. Andrew Pressley is Professor of Mathematics at King’s College London, UK. The Springer Undergraduate Mathematics Series (SUMS) is a series designed for undergraduates in mathematics and the sciences worldwide. From core foundational material to final year topics, SUMS books take a fresh and modern approach and are ideal for self-study or for a one- or two-semester course. Each book includes numerous examples, problems and fully worked solutions.



Elementary Differential Geometry


Elementary Differential Geometry
DOWNLOAD
Author : Barrett O'Neill
language : en
Publisher: Academic Press
Release Date : 2014-05-12

Elementary Differential Geometry written by Barrett O'Neill and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-12 with Mathematics categories.


Elementary Differential Geometry focuses on the elementary account of the geometry of curves and surfaces. The book first offers information on calculus on Euclidean space and frame fields. Topics include structural equations, connection forms, frame fields, covariant derivatives, Frenet formulas, curves, mappings, tangent vectors, and differential forms. The publication then examines Euclidean geometry and calculus on a surface. Discussions focus on topological properties of surfaces, differential forms on a surface, integration of forms, differentiable functions and tangent vectors, congruence of curves, derivative map of an isometry, and Euclidean geometry. The manuscript takes a look at shape operators, geometry of surfaces in E, and Riemannian geometry. Concerns include geometric surfaces, covariant derivative, curvature and conjugate points, Gauss-Bonnet theorem, fundamental equations, global theorems, isometries and local isometries, orthogonal coordinates, and integration and orientation. The text is a valuable reference for students interested in elementary differential geometry.



Elementary Differential Geometry


Elementary Differential Geometry
DOWNLOAD
Author : Christian Bär
language : en
Publisher: Cambridge University Press
Release Date : 2010-05-06

Elementary Differential Geometry written by Christian Bär and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-05-06 with Mathematics categories.


This easy-to-read introduction takes the reader from elementary problems through to current research. Ideal for courses and self-study.



Differential Geometry And Mathematical Physics


Differential Geometry And Mathematical Physics
DOWNLOAD
Author : Gerd Rudolph
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-11-09

Differential Geometry And Mathematical Physics written by Gerd Rudolph and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-09 with Science categories.


Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.



Differential Geometry Of Curves And Surfaces


Differential Geometry Of Curves And Surfaces
DOWNLOAD
Author : Kristopher Tapp
language : en
Publisher: Springer
Release Date : 2016-09-30

Differential Geometry Of Curves And Surfaces written by Kristopher Tapp and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-30 with Mathematics categories.


This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.



Elementary Topics In Differential Geometry


Elementary Topics In Differential Geometry
DOWNLOAD
Author : John A. Thorpe
language : en
Publisher:
Release Date : 1996

Elementary Topics In Differential Geometry written by John A. Thorpe and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Geometry, Differential categories.




Fundamentals Of Differential Geometry


Fundamentals Of Differential Geometry
DOWNLOAD
Author : Serge Lang
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Fundamentals Of Differential Geometry written by Serge Lang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


The present book aims to give a fairly comprehensive account of the fundamentals of differential manifolds and differential geometry. The size of the book influenced where to stop, and there would be enough material for a second volume (this is not a threat). At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differen tiable maps in them (immersions, embeddings, isomorphisms, etc. ). One may also use differentiable structures on topological manifolds to deter mine the topological structure of the manifold (for example, it la Smale [Sm 67]). In differential geometry, one puts an additional structure on the differentiable manifold (a vector field, a spray, a 2-form, a Riemannian metric, ad lib. ) and studies properties connected especially with these objects. Formally, one may say that one studies properties invariant under the group of differentiable automorphisms which preserve the additional structure. In differential equations, one studies vector fields and their in tegral curves, singular points, stable and unstable manifolds, etc. A certain number of concepts are essential for all three, and are so basic and elementary that it is worthwhile to collect them together so that more advanced expositions can be given without having to start from the very beginnings.



Differential Geometry Of Curves And Surfaces


Differential Geometry Of Curves And Surfaces
DOWNLOAD
Author : Shoshichi Kobayashi
language : en
Publisher: Springer Nature
Release Date : 2019-11-13

Differential Geometry Of Curves And Surfaces written by Shoshichi Kobayashi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-13 with Mathematics categories.


This book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. Berkeley for 50 years, recently translated by Eriko Shinozaki Nagumo and Makiko Sumi Tanaka. There are five chapters: 1. Plane Curves and Space Curves; 2. Local Theory of Surfaces in Space; 3. Geometry of Surfaces; 4. Gauss–Bonnet Theorem; and 5. Minimal Surfaces. Chapter 1 discusses local and global properties of planar curves and curves in space. Chapter 2 deals with local properties of surfaces in 3-dimensional Euclidean space. Two types of curvatures — the Gaussian curvature K and the mean curvature H —are introduced. The method of the moving frames, a standard technique in differential geometry, is introduced in the context of a surface in 3-dimensional Euclidean space. In Chapter 3, the Riemannian metric on a surface is introduced and properties determined only by the first fundamental form are discussed. The concept of a geodesic introduced in Chapter 2 is extensively discussed, and several examples of geodesics are presented with illustrations. Chapter 4 starts with a simple and elegant proof of Stokes’ theorem for a domain. Then the Gauss–Bonnet theorem, the major topic of this book, is discussed at great length. The theorem is a most beautiful and deep result in differential geometry. It yields a relation between the integral of the Gaussian curvature over a given oriented closed surface S and the topology of S in terms of its Euler number χ(S). Here again, many illustrations are provided to facilitate the reader’s understanding. Chapter 5, Minimal Surfaces, requires some elementary knowledge of complex analysis. However, the author retained the introductory nature of this book and focused on detailed explanations of the examples of minimal surfaces given in Chapter 2.