Elements Of Partial Differential Equations

DOWNLOAD
Download Elements Of Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Elements Of Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Elements Of Partial Differential Equations
DOWNLOAD
Author : Pavel Drábek
language : en
Publisher: De Gruyter Textbook
Release Date : 2014
Elements Of Partial Differential Equations written by Pavel Drábek and has been published by De Gruyter Textbook this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with Differential equations, Partial categories.
This book presents a first introduction to PDEs on an elementary level, enabling the reader to understand what partial differential equations are, where they come from and how they can be solved. The intention is that the reader understands the basi
Partial Differential Equations And The Finite Element Method
DOWNLOAD
Author : Pavel Ŝolín
language : en
Publisher: John Wiley & Sons
Release Date : 2005-12-16
Partial Differential Equations And The Finite Element Method written by Pavel Ŝolín and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-16 with Mathematics categories.
A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.
Elements Of Partial Differential Equations
DOWNLOAD
Author : Ian Naismith Sneddon
language : en
Publisher:
Release Date : 1957
Elements Of Partial Differential Equations written by Ian Naismith Sneddon and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1957 with Differential equations, Partial categories.
Elements Of Partial Differential Equations
DOWNLOAD
Author : Ian N. Sneddon
language : en
Publisher: Courier Corporation
Release Date : 2006-01-01
Elements Of Partial Differential Equations written by Ian N. Sneddon and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-01 with Mathematics categories.
Geared toward students of applied rather than pure mathematics, this volume introduces elements of partial differential equations. Its focus is primarily upon finding solutions to particular equations rather than general theory. Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent study will particularly appreciate the worked examples that appear throughout the text.
Numerical Solution Of Partial Differential Equations By The Finite Element Method
DOWNLOAD
Author : Claes Johnson
language : en
Publisher: Courier Corporation
Release Date : 2012-05-23
Numerical Solution Of Partial Differential Equations By The Finite Element Method written by Claes Johnson and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-23 with Mathematics categories.
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.
Numerical Approximation Of Partial Differential Equations
DOWNLOAD
Author : Alfio Quarteroni
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-02-11
Numerical Approximation Of Partial Differential Equations written by Alfio Quarteroni and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-11 with Mathematics categories.
Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).
Partial Differential Equations In Action
DOWNLOAD
Author : Sandro Salsa
language : en
Publisher: Springer
Release Date : 2015-04-24
Partial Differential Equations In Action written by Sandro Salsa and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-24 with Mathematics categories.
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.
Mathematical And Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : Joël Chaskalovic
language : en
Publisher: Springer
Release Date : 2014-05-16
Mathematical And Numerical Methods For Partial Differential Equations written by Joël Chaskalovic and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-16 with Mathematics categories.
This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic.
Analytic Methods For Partial Differential Equations
DOWNLOAD
Author : G. Evans
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Analytic Methods For Partial Differential Equations written by G. Evans and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. J ames Clerk Maxwell, for example, put electricity and magnetism into a unified theory by estab lishing Maxwell's equations for electromagnetic theory, which gave solutions for problems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechankal processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier-Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forcasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.
Numerical Partial Differential Equations For Environmental Scientists And Engineers
DOWNLOAD
Author : Daniel R. Lynch
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-12-15
Numerical Partial Differential Equations For Environmental Scientists And Engineers written by Daniel R. Lynch and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-12-15 with Science categories.
For readers with some competence in PDE solution properties, this book offers an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It presents two major discretization methods: Finite Difference and Finite Element, plus a section on practical approaches to ill-posed problems. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems.