Elements Of Statistical Inference

DOWNLOAD
Download Elements Of Statistical Inference PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Elements Of Statistical Inference book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
The Elements Of Statistical Learning
DOWNLOAD
Author : Trevor Hastie
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
The Elements Of Statistical Learning written by Trevor Hastie and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates.
Elements Of Statistical Inference
DOWNLOAD
Author : David V. Huntsberger
language : en
Publisher:
Release Date : 1967
Elements Of Statistical Inference written by David V. Huntsberger and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1967 with Mathematical statistics categories.
An Introduction To Statistical Learning
DOWNLOAD
Author : Gareth James
language : en
Publisher: Springer Nature
Release Date : 2023-06-30
An Introduction To Statistical Learning written by Gareth James and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Mathematics categories.
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
The Elements Of Statistical Learning
DOWNLOAD
Author : Trevor Hastie
language : en
Publisher:
Release Date : 2009
The Elements Of Statistical Learning written by Trevor Hastie and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Biology categories.
All Of Statistics
DOWNLOAD
Author : Larry Wasserman
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-11
All Of Statistics written by Larry Wasserman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-11 with Mathematics categories.
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Computer Age Statistical Inference Student Edition
DOWNLOAD
Author : Bradley Efron
language : en
Publisher: Cambridge University Press
Release Date : 2021-06-17
Computer Age Statistical Inference Student Edition written by Bradley Efron and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-17 with Computers categories.
Now in paperback and fortified with exercises, this brilliant, enjoyable text demystifies data science, statistics and machine learning.
Elements Of Causal Inference
DOWNLOAD
Author : Jonas Peters
language : en
Publisher: MIT Press
Release Date : 2017-11-29
Elements Of Causal Inference written by Jonas Peters and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-29 with Computers categories.
A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.
Principles Of Statistical Inference
DOWNLOAD
Author : D. R. Cox
language : en
Publisher: Cambridge University Press
Release Date : 2006-08-10
Principles Of Statistical Inference written by D. R. Cox and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-08-10 with Mathematics categories.
In this definitive book, D. R. Cox gives a comprehensive and balanced appraisal of statistical inference. He develops the key concepts, describing and comparing the main ideas and controversies over foundational issues that have been keenly argued for more than two-hundred years. Continuing a sixty-year career of major contributions to statistical thought, no one is better placed to give this much-needed account of the field. An appendix gives a more personal assessment of the merits of different ideas. The content ranges from the traditional to the contemporary. While specific applications are not treated, the book is strongly motivated by applications across the sciences and associated technologies. The mathematics is kept as elementary as feasible, though previous knowledge of statistics is assumed. The book will be valued by every user or student of statistics who is serious about understanding the uncertainty inherent in conclusions from statistical analyses.