Elliptic Boundary Value Problems Of Second Order In Piecewise Smooth Domains

DOWNLOAD
Download Elliptic Boundary Value Problems Of Second Order In Piecewise Smooth Domains PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Elliptic Boundary Value Problems Of Second Order In Piecewise Smooth Domains book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Elliptic Boundary Value Problems Of Second Order In Piecewise Smooth Domains
DOWNLOAD
Author : Michail Borsuk
language : en
Publisher: Elsevier
Release Date : 2006-01-12
Elliptic Boundary Value Problems Of Second Order In Piecewise Smooth Domains written by Michail Borsuk and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-12 with Mathematics categories.
The book contains a systematic treatment of the qualitative theory of elliptic boundary value problems for linear and quasilinear second order equations in non-smooth domains. The authors concentrate on the following fundamental results: sharp estimates for strong and weak solutions, solvability of the boundary value problems, regularity assertions for solutions near singular points.Key features:* New the Hardy – Friedrichs – Wirtinger type inequalities as well as new integral inequalities related to the Cauchy problem for a differential equation.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m – Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m - Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.
Elliptic Boundary Value Problems On Corner Domains
DOWNLOAD
Author : Monique Dauge
language : en
Publisher: Springer
Release Date : 2006-11-14
Elliptic Boundary Value Problems On Corner Domains written by Monique Dauge and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-14 with Mathematics categories.
This research monograph focusses on a large class of variational elliptic problems with mixed boundary conditions on domains with various corner singularities, edges, polyhedral vertices, cracks, slits. In a natural functional framework (ordinary Sobolev Hilbert spaces) Fredholm and semi-Fredholm properties of induced operators are completely characterized. By specially choosing the classes of operators and domains and the functional spaces used, precise and general results may be obtained on the smoothness and asymptotics of solutions. A new type of characteristic condition is introduced which involves the spectrum of associated operator pencils and some ideals of polynomials satisfying some boundary conditions on cones. The methods involve many perturbation arguments and a new use of Mellin transform. Basic knowledge about BVP on smooth domains in Sobolev spaces is the main prerequisite to the understanding of this book. Readers interested in the general theory of corner domains will find here a new basic theory (new approaches and results) as well as a synthesis of many already known results; those who need regularity conditions and descriptions of singularities for numerical analysis will find precise statements and also a means to obtain further one in many explicit situtations.
Interface Problems For Elliptic Second Order Equations In Non Smooth Domains
DOWNLOAD
Author : Mikhail Borsuk
language : en
Publisher: Springer Nature
Release Date : 2024-10-26
Interface Problems For Elliptic Second Order Equations In Non Smooth Domains written by Mikhail Borsuk and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-26 with Mathematics categories.
The goal of this book is to investigate the behavior of weak solutions to the elliptic interface problem in a neighborhood of boundary singularities: angular and conic points or edges. This problem is considered both for linear and quasi-linear equations, which are among the less studied varieties. As a second edition of Transmission Problems for Elliptic Second-Order Equations for Non-Smooth Domains (Birkhäuser, 2010), this volume includes two entirely new chapters: one about the oblique derivative problems for the perturbed p(x)-Laplacian equation in a bounded n-dimensional cone, and another about the existence of bounded weak solutions. Researchers and advanced graduate students will appreciate this compact compilation of new material in the field.
Transmission Problems For Elliptic Second Order Equations In Non Smooth Domains
DOWNLOAD
Author : Mikhail Borsuk
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-09-02
Transmission Problems For Elliptic Second Order Equations In Non Smooth Domains written by Mikhail Borsuk and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-02 with Mathematics categories.
This book investigates the behaviour of weak solutions to the elliptic transmisssion problem in a neighborhood of boundary singularities: angular and conic points or edges, considering this problem both for linear and quasi-linear equations.
Elliptic Equations In Polyhedral Domains
DOWNLOAD
Author : V. G. Maz_i_a
language : en
Publisher: American Mathematical Soc.
Release Date : 2010-04-22
Elliptic Equations In Polyhedral Domains written by V. G. Maz_i_a and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-22 with Mathematics categories.
This is the first monograph which systematically treats elliptic boundary value problems in domains of polyhedral type. The authors mainly describe their own recent results focusing on the Dirichlet problem for linear strongly elliptic systems of arbitrary order, Neumann and mixed boundary value problems for second order systems, and on boundary value problems for the stationary Stokes and Navier-Stokes systems. A feature of the book is the systematic use of Green's matrices. Using estimates for the elements of these matrices, the authors obtain solvability and regularity theorems for the solutions in weighted and non-weighted Sobolev and Holder spaces. Some classical problems of mathematical physics (Laplace and biharmonic equations, Lame system) are considered as examples. Furthermore, the book contains maximum modulus estimates for the solutions and their derivatives. The exposition is self-contained, and an introductory chapter provides background material on the theory of elliptic boundary value problems in domains with smooth boundaries and in domains with conical points. The book is destined for graduate students and researchers working in elliptic partial differential equations and applications.
Elliptic Boundary Value Problems In Domains With Point Singularities
DOWNLOAD
Author : Vladimir Kozlov
language : en
Publisher: American Mathematical Soc.
Release Date : 1997
Elliptic Boundary Value Problems In Domains With Point Singularities written by Vladimir Kozlov and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Mathematics categories.
For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR
Elliptic Problems In Nonsmooth Domains
DOWNLOAD
Author : Pierre Grisvard
language : en
Publisher: SIAM
Release Date : 2011-10-20
Elliptic Problems In Nonsmooth Domains written by Pierre Grisvard and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-20 with Mathematics categories.
Originally published: Boston: Pitman Advanced Pub. Program, 1985.
Proceedings Of The St Petersburg Mathematical Society Volume I
DOWNLOAD
Author : O. A. Ladyzhenskaya Anatoli_ Moiseevich Vershik
language : en
Publisher: American Mathematical Soc.
Release Date : 1993-03-22
Proceedings Of The St Petersburg Mathematical Society Volume I written by O. A. Ladyzhenskaya Anatoli_ Moiseevich Vershik and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993-03-22 with Mathematics categories.
This is the inaugural volume of a new book series published under the auspices of the St. Petersburg Mathematical Society. The book contains contributions by some of the leading mathematicians in St. Petersburg. Ranging over a wide array of topics, these papers testify to the diverse interests and productive mathematical life of the St. Petersburg Mathematical Society.
Singularities In Elliptic Boundary Value Problems And Elasticity And Their Connection With Failure Initiation
DOWNLOAD
Author : Zohar Yosibash
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-12-02
Singularities In Elliptic Boundary Value Problems And Elasticity And Their Connection With Failure Initiation written by Zohar Yosibash and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-12-02 with Mathematics categories.
This introductory and self-contained book gathers as much explicit mathematical results on the linear-elastic and heat-conduction solutions in the neighborhood of singular points in two-dimensional domains, and singular edges and vertices in three-dimensional domains. These are presented in an engineering terminology for practical usage. The author treats the mathematical formulations from an engineering viewpoint and presents high-order finite-element methods for the computation of singular solutions in isotropic and anisotropic materials, and multi-material interfaces. The proper interpretation of the results in engineering practice is advocated, so that the computed data can be correlated to experimental observations. The book is divided into fourteen chapters, each containing several sections. Most of it (the first nine Chapters) addresses two-dimensional domains, where only singular points exist. The solution in a vicinity of these points admits an asymptotic expansion composed of eigenpairs and associated generalized flux/stress intensity factors (GFIFs/GSIFs), which are being computed analytically when possible or by finite element methods otherwise. Singular points associated with weakly coupled thermoelasticity in the vicinity of singularities are also addressed and thermal GSIFs are computed. The computed data is important in engineering practice for predicting failure initiation in brittle material on a daily basis. Several failure laws for two-dimensional domains with V-notches are presented and their validity is examined by comparison to experimental observations. A sufficient simple and reliable condition for predicting failure initiation (crack formation) in micron level electronic devices, involving singular points, isstill a topic of active research and interest, and is addressed herein. Explicit singular solutions in the vicinity of vertices and edges in three-dimensional domains are provided in the remaining five chapters. New methods for the computation of generalized edge flux/stress intensity functions along singular edges are presented and demonstrated by several example problems from the field of fracture mechanics; including anisotropic domains and bimaterial interfaces. Circular edges are also presented and the author concludes with some remarks on open questions. This well illustrated book will appeal to both applied mathematicians and engineers working in the field of fracture mechanics and singularities.
Partial Differential Equations Ix
DOWNLOAD
Author : M.S. Agranovich
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
Partial Differential Equations Ix written by M.S. Agranovich and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.
This EMS volume gives an overview of the modern theory of elliptic boundary value problems. The contribution by M.S. Agranovich is devoted to differential elliptic boundary problems, mainly in smooth bounded domains, and their spectral properties. This article continues his contribution to EMS 63. The contribution by A. Brenner and E. Shargorodsky concerns the theory of boundary value problems for elliptic pseudodifferential operators. Problems both with and without the transmission property, as well as parameter-dependent problems are considered. The article by B. Plamenevskij deals with general differential elliptic boundary value problems in domains with singularities.