[PDF] Elliptic Curve Cryptography Ecc Key Generation Encryption Decryption And Digital Signatures Learn By Examples With Python And Tkinter - eBooks Review

Elliptic Curve Cryptography Ecc Key Generation Encryption Decryption And Digital Signatures Learn By Examples With Python And Tkinter


Elliptic Curve Cryptography Ecc Key Generation Encryption Decryption And Digital Signatures Learn By Examples With Python And Tkinter
DOWNLOAD

Download Elliptic Curve Cryptography Ecc Key Generation Encryption Decryption And Digital Signatures Learn By Examples With Python And Tkinter PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Elliptic Curve Cryptography Ecc Key Generation Encryption Decryption And Digital Signatures Learn By Examples With Python And Tkinter book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Elliptic Curve Cryptography Ecc Key Generation Encryption Decryption And Digital Signatures Learn By Examples With Python And Tkinter


Elliptic Curve Cryptography Ecc Key Generation Encryption Decryption And Digital Signatures Learn By Examples With Python And Tkinter
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2024-08-30

Elliptic Curve Cryptography Ecc Key Generation Encryption Decryption And Digital Signatures Learn By Examples With Python And Tkinter written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-30 with Computers categories.


This book is dedicated to the development of a sophisticated and feature-rich Tkinter GUI that leverages Elliptic Curve Cryptography (ECC) for various cryptographic operations, including key generation, encryption, decryption, signing, and verifying data. The primary goal is to create an interactive application that allows users to perform these operations on synthetic financial data, demonstrating the practical use of ECC in securing sensitive information. The GUI is meticulously designed with multiple tabs, each corresponding to a different cryptographic function, enabling users to navigate through key generation, data encryption/decryption, and digital signature processes seamlessly. The GUI starts with the key generation tab, where users can generate ECC key pairs. These key pairs are essential for the subsequent encryption and signing operations. The GUI provides feedback on the generated keys, displaying the public and private keys in hexadecimal format. This feature is crucial for understanding the foundational role of ECC in modern cryptography, where small key sizes provide strong security. The key generation process also highlights the advantages of ECC over traditional RSA, particularly in terms of efficiency and security per bit length. In the encryption and decryption tab, the GUI enables users to encrypt synthetic financial data using the previously generated ECC keys. The encryption process is performed using AES in Cipher Feedback (CFB) mode, with the AES key derived from the ECC private key through key derivation functions. This setup showcases the hybrid approach where ECC is used for key exchange or key derivation, and AES is employed for the actual encryption of data. The GUI displays the generated ciphertext in a hexadecimal format, along with the Initialization Vector (IV) used in the encryption process, providing a clear view of how the encrypted data is structured. The signing and verifying tab demonstrates the use of ECC for digital signatures. Here, users can sign the synthetic financial data using the ECDSA (Elliptic Curve Digital Signature Algorithm), a widely recognized algorithm for ensuring data integrity and authenticity. The GUI displays the generated digital signature in hexadecimal format, offering insights into how ECC is applied in real-world scenarios like secure messaging and digital certificates. The verification process, where the signature is checked against the original data using the ECC public key, is also integrated into the GUI, emphasizing the importance of digital signatures in verifying data authenticity. The synthetic financial data used in these operations is generated within the GUI, simulating transaction records that include fields such as transaction ID, account number, amount, currency, timestamp, and transaction type. This dataset is crucial for demonstrating the encryption and signing processes in a context that mirrors real-world financial systems. By encrypting and signing this data, users can understand how ECC can be applied to protect sensitive information in financial transactions, ensuring both confidentiality and integrity. Finally, the GUI’s design incorporates user-friendly elements such as scrolled text widgets for displaying long hexadecimal outputs, entry fields for user inputs, and clear labels for guiding the user through each cryptographic operation. The application provides a comprehensive and interactive learning experience, allowing users to explore the intricacies of ECC in a controlled environment. By integrating ECC with AES for encryption and ECDSA for signing, the GUI offers a practical demonstration of how modern cryptographic techniques can be combined to secure data, making it an invaluable tool for anyone looking to understand or teach the principles of ECC-based cryptography.



Elgamal Cryptosystem Key Generation Encryption Decryption And Digital Signatures Learn By Examples With Python And Tkinter


Elgamal Cryptosystem Key Generation Encryption Decryption And Digital Signatures Learn By Examples With Python And Tkinter
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2024-09-01

Elgamal Cryptosystem Key Generation Encryption Decryption And Digital Signatures Learn By Examples With Python And Tkinter written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-01 with Computers categories.


This book presents an interactive Python application designed to showcase the ElGamal encryption algorithm through a user-friendly Tkinter graphical user interface (GUI). At its heart, the application focuses on the three core aspects of ElGamal cryptography: key generation, encryption, and decryption. Users can generate ElGamal keys of varying sizes by specifying the number of bits, and view these keys in multiple formats, including raw integers, hexadecimal, and Base64 encoding. This flexibility facilitates seamless integration of the keys into different systems and applications, making the tool invaluable for both educational purposes and practical implementations. Additionally, the application allows users to encrypt and decrypt data using the generated ElGamal keys, providing a comprehensive demonstration of how this cryptographic scheme secures information. The GUI simplifies the process of managing and visualizing encrypted and decrypted data, helping users understand the effectiveness of ElGamal encryption in maintaining data confidentiality. By combining these functionalities within an intuitive interface, the project not only illustrates key cryptographic concepts but also offers a hands-on approach to learning and applying ElGamal encryption in real-world scenarios. In chapter one, we developed a project which aims to create an intuitive graphical user interface (GUI) for generating and displaying ElGamal encryption keys using the Tkinter library. Users can specify the number of bits for key generation and view the keys in multiple formats, including raw integers, hexadecimal, and Base64 encoding. This flexibility ensures compatibility with various systems and applications, making it easier for users to integrate and verify cryptographic keys. The application features a tabbed interface that organizes the key generation process. Users can enter the desired key size in one tab and generate the keys with a button click. The keys are then displayed in separate tabs according to their format. This structured approach simplifies the comparison and verification of keys in different representations, enhancing the usability and effectiveness of the key management process. In chapter two, the fifth project integrates ElGamal encryption and decryption techniques into a user-friendly application for securing sensitive data, such as credit card numbers and transaction details. The application generates synthetic datasets to demonstrate these cryptographic methods in action, allowing users to create keys, encrypt data, and decrypt it to verify integrity and confidentiality.Built with Tkinter, the application provides an interactive experience with an intuitive graphical interface. Users can specify key generation parameters, generate synthetic transaction data, and view the original, encrypted, and decrypted data through a series of tabs. This design facilitates easy visualization of encryption and decryption effects, making the application a practical tool for understanding and experimenting with cryptographic operations. In chapter two, the ninth project involves developing a Tkinter-based GUI to demonstrate the ElGamal encryption algorithm using synthetic employee data. The application provides an intuitive platform for generating, encrypting, and decrypting data, while also visualizing results through interactive graphs. Users can manage data with multiple tabs for setup, original, encrypted, and decrypted views, and utilize matplotlib for visualizing data distributions and trends. By integrating data management, encryption, and visualization, the project offers a comprehensive tool for understanding and applying the ElGamal algorithm in a secure and user-friendly manner. In chapter three, the fourth project is designed to process Bitcoin transactions using the ElGamal encryption scheme. It features a comprehensive approach that includes generating, encrypting, decrypting, and analyzing Bitcoin transaction data. The core of the project is the integration of ElGamal encryption to ensure the confidentiality and integrity of transaction data, demonstrated through a user-friendly graphical interface. The application utilizes Tkinter for the interface and Matplotlib for data visualization, allowing users to interact with and analyze synthetic Bitcoin datasets. It supports functionalities like encryption, decryption, and digital signature verification, all while presenting data through intuitive visual graphs. This combination of encryption and visualization provides a robust tool for secure transaction processing and analysis. In chapter three, the sixth project is designed to demonstrate the integration of cryptographic techniques with data visualization and management through a graphical user interface (GUI) built using Tkinter. At its core, the project utilizes the ElGamal cryptosystem, a public-key cryptographic algorithm known for its security in encryption and digital signatures. The GUI enables users to interact with various functionalities of the ElGamal system, including encryption, decryption, and signature verification, all while managing and visualizing a synthetic dataset. The ElGamal class encapsulates the core cryptographic functionalities, providing methods for encrypting and decrypting messages, as well as signing and verifying signatures. It uses secure random number generation and hashing to ensure robust cryptographic operations. To facilitate testing and demonstration, the project includes a synthetic dataset generation function, generate_gov_dataset(), which creates a mock dataset simulating government documents with attributes like document IDs, classification levels, departments, and content. This dataset allows users to apply cryptographic techniques to structured data, providing a realistic scenario for data security operations. The process_dataset() function applies encryption and digital signatures to this synthetic dataset, transforming it into an encrypted format with corresponding signatures for content verification. The GUI, implemented in the ElGamalGUI class, serves as the primary interface, featuring tabs for viewing original and encrypted data, decrypted data, signatures, and distribution graphs. These visualizations help users understand the impact of encryption on data characteristics and evaluate the effectiveness of the cryptographic methods. Overall, this project provides a comprehensive tool for exploring cryptographic techniques in a user-friendly environment, offering valuable insights into practical applications of encryption and digital signatures in data security.



Rsa Cryptosystem Key Generation Encryption Decryption And Digital Signatures Learn By Examples With Python And Tkinter


Rsa Cryptosystem Key Generation Encryption Decryption And Digital Signatures Learn By Examples With Python And Tkinter
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2024-08-28

Rsa Cryptosystem Key Generation Encryption Decryption And Digital Signatures Learn By Examples With Python And Tkinter written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-28 with Computers categories.


Unlock the secrets of modern cryptography explored in this book, a comprehensive guide that takes you from the fundamentals to advanced applications in encryption, decryption, and digital signatures. Whether you're a beginner or an experienced developer, this book offers hands-on examples, real-world scenarios, and detailed explanations that make complex concepts accessible and engaging. Dive into the world of RSA, as you learn to build secure systems and protect sensitive information with confidence. Perfect for anyone looking to master the art of cryptography, this book is your key to the future of digital security. In chapter one, we implemented RSA key generation within a Tkinter-based GUI application. This example was designed to be user-friendly, allowing users to generate RSA keys with a simple button click. The process involved generating a private key and a corresponding public key, which were then displayed within a text widget for easy copying and saving. This example demonstrated the ease with which RSA keys can be generated programmatically, making cryptography more accessible to users who may not be familiar with command-line interfaces. In chapter two, we embarked on a journey to create a sophisticated RSA encryption and decryption project. We began by constructing a comprehensive Tkinter-based GUI application that allows users to generate RSA key pairs, create and sign transactions, verify signatures, and securely store transactions. The initial focus was on setting up the graphical user interface, with multiple tabs dedicated to different functionalities, ensuring that the application was both user-friendly and feature-rich. The core functionality of the application revolves around RSA key generation, transaction creation, and digital signing. The RSA keys are generated using the cryptography library, and users can generate private and public keys, which are then displayed in the application. This setup forms the foundation for securely signing transactions. The transaction creation process involves entering details like the sender, receiver, amount, and currency, after which the transaction data is signed using the private key, producing a digital signature. This digital signature ensures the authenticity and integrity of the transaction, preventing any tampering or forgery. Once transactions are signed, they can be stored in a secure manner. The application allows users to save these transactions, along with their digital signatures, in a JSON file, providing a permanent and verifiable record. This storage mechanism is crucial for maintaining the integrity of financial transactions or any sensitive data, as it ensures that each transaction is accompanied by a corresponding signature and public key, enabling later verification. The verification process is another key component of the project. The application retrieves stored transactions and verifies the digital signature against the stored public key. This process ensures that the transaction has not been altered since it was signed, confirming its authenticity. The verification feature is critical in real-world applications, where data integrity and authenticity are paramount, such as in financial systems, legal documents, or secure communications. Throughout the chapter, the project was designed with a strong emphasis on real-world applicability, robustness, and security. The example provided not only serves as a practical guide for implementing RSA encryption and decryption with digital signatures but also highlights the importance of secure key management, transaction integrity, and data authenticity in modern cryptographic applications. This project demonstrates the power of RSA in securing sensitive data and transactions in a user-friendly and accessible way, making it an essential tool for developers working with encryption in real-world scenarios. In chapter three, we some projects focused on RSA digital signatures, delving into the creation of synthetic datasets, key generation, data signing, and verification processes. The project’s primary objective is to demonstrate how RSA digital signatures can be applied in a real-world scenario by securely signing and verifying user data. This example uses a synthetic dataset of user information, including user IDs, names, emails, and registration dates, to illustrate the practical implementation of RSA cryptography. The project begins with generating RSA keys using the generate_rsa_keys function. This function creates a pair of keys: a private key used for signing data and a public key for verifying the signature. These keys are essential for the RSA cryptographic process, where the private key ensures that the data remains authentic and unaltered, while the public key is used to verify the authenticity of the signed data. The keys are serialized into PEM format, a widely-used encoding standard that facilitates the secure storage and transmission of cryptographic keys. Next, a synthetic user dataset is generated using the create_synthetic_user_dataset function. This dataset comprises a specified number of user records, each containing a unique user ID, name, email address, and registration date. The purpose of this synthetic data is to simulate a realistic environment where user information needs to be securely signed and verified. By using a synthetic dataset, we ensure that the example remains versatile and adaptable to various scenarios without relying on actual sensitive information. Once the dataset is generated, the sign_data function is employed to sign each user's data using the RSA private key. This process involves creating a digital signature for each record, ensuring that any alteration to the data after signing would invalidate the signature. The digital signature serves as a cryptographic proof of the data’s integrity and authenticity, providing a robust mechanism to detect tampering or unauthorized modifications. The signatures are then stored alongside the user data for subsequent verification. Finally, the project includes a mechanism for storing the signed data and public key in a JSON file, and a function for retrieving and verifying the data. The store_user_data function saves the user data, corresponding signatures, and the public key to a file, allowing for secure storage and later retrieval. The retrieve_and_verify_user_data function reads the stored data, verifies each signature using the public key, and confirms whether the data remains unaltered. This final step completes the demonstration of how RSA digital signatures can be effectively used to secure user data, making it a comprehensive example for those learning about cryptographic techniques in real-world applications.



Image Steganography Least Significant Bit Lsb With Aes Des Rsa Ecc And Elgamal Cryptosystem Learn By Examples With Python And Tkinter


Image Steganography Least Significant Bit Lsb With Aes Des Rsa Ecc And Elgamal Cryptosystem Learn By Examples With Python And Tkinter
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2024-09-03

Image Steganography Least Significant Bit Lsb With Aes Des Rsa Ecc And Elgamal Cryptosystem Learn By Examples With Python And Tkinter written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-03 with Computers categories.


In the rapidly evolving field of digital security, image steganography has emerged as a vital technique for embedding secret information within digital images, ensuring both privacy and data integrity. "IMAGE STEGANOGRAPHY: Least Significant Bit (LSB) with AES, DES, RSA, ECC, and ELGAMAL Cryptosystem: LEARN BY EXAMPLES WITH PYTHON AND TKINTER" delves into the intricate world of steganography, exploring how the Least Significant Bit (LSB) method can be employed in conjunction with robust cryptographic algorithms to enhance data concealment. This book provides a comprehensive guide to integrating classic and modern encryption techniques, including AES, DES, RSA, ECC, and ElGamal, within the realm of image steganography. Through practical examples and hands-on projects using Python and Tkinter, readers will gain a deep understanding of how to implement these cryptographic systems to securely encode and decode hidden messages within images. The book is designed to cater to both novices and experienced developers, offering clear explanations, detailed code examples, and user-friendly Tkinter interfaces for building and testing steganographic applications. By the end of this journey, readers will not only master the art of image-based data hiding but also develop a strong foundation in integrating advanced cryptographic methods with real-world applications. Project 1 and 2 successfully combines user-friendly design with effective data concealment techniques. By leveraging the Least Significant Bit (LSB) method, the application allows users to encode and decode text messages within images with ease. The integration of the Python Imaging Library (PIL) for image manipulation and Tkinter for the graphical interface ensures that users can interact with the program effortlessly, focusing on the functionality rather than the underlying technical complexities. The application’s dual-tab interface for encoding and decoding provides a seamless user experience, allowing users to visually compare original and encoded images, and retrieve hidden messages with immediate feedback. As an educational tool, it offers practical insight into the principles of steganography and image processing, making it accessible to individuals with varying levels of technical expertise. Overall, this project demonstrates a successful implementation of steganographic techniques in a user-friendly and interactive format, enhancing both learning and practical application of data concealment methods. Project 3 and 4 successfully merges DES encryption with steganography through a graphical user interface (GUI) to create a practical and secure method for encoding and decoding messages within images. By utilizing the Least Significant Bit (LSB) technique, the application ensures that encrypted messages are subtly embedded in image pixels, preserving the visual integrity of the images while keeping the hidden information discreet and secure. The use of DES encryption enhances the security of the messages, ensuring that only individuals with the correct password can decrypt and access the hidden content. The GUI facilitates an intuitive user experience, allowing users to seamlessly encode and decode messages while providing visual comparisons of the original and encoded images. The application’s error handling and feedback mechanisms ensure a smooth and user-friendly process. Overall, this project not only highlights the effective integration of cryptographic and steganographic techniques but also demonstrates how such technology can be made accessible and practical for secure digital communication. The combination of Tkinter's ease of use and DES encryption's robust security offers a valuable tool for confidential information management. Project 5 and 6 delivers a comprehensive and user-friendly solution for embedding and extracting encrypted messages within images using AES encryption. The application effectively combines advanced cryptographic techniques with steganography to ensure that sensitive information is both securely hidden and easily retrievable. With its intuitive Tkinter-based interface, users can seamlessly encode messages into images and decrypt them with confidence, knowing that their data is protected by robust encryption and concealed through the Least Significant Bit (LSB) technique. By supporting various image formats and providing features for image browsing and saving, the application enhances the user experience while addressing potential errors with informative guidance. As both an educational tool and a practical solution, the ImageSteganographyApp underscores the critical role of integrating data security and privacy measures in digital communications, demonstrating the practical applications of combining cryptography and steganography in a single, accessible platform. Project 7 and 8 delivers a powerful solution for secure communication by combining RSA encryption with image steganography using the Least Significant Bit (LSB) technique. By first encrypting messages with RSA's robust asymmetric algorithm and then embedding the encrypted data within an image, the application ensures that sensitive information is both confidential and covert. The use of RSA provides strong encryption that protects the message from unauthorized access, while LSB steganography discreetly hides the encrypted data, making it nearly invisible to casual observers. The Tkinter-based graphical user interface enhances user accessibility by simplifying complex cryptographic and steganographic processes. Users can generate RSA key pairs, select images for embedding or extracting messages, and manage encryption and decryption tasks through an intuitive interface. This combination of advanced encryption and stealthy data embedding is particularly valuable in fields where secure and unobtrusive communication is critical, such as in government, military, and corporate settings. Overall, the project offers a robust and practical approach to safeguarding sensitive information, blending security and secrecy effectively. Project 9 and 10 showcases an innovative approach to secure communication by integrating Elliptic Curve Cryptography (ECC) with image-based steganography within a Tkinter-based graphical user interface (GUI). The application provides a seamless and secure method for encoding confidential messages into images, leveraging ECC's strong encryption capabilities to ensure message confidentiality while using steganography to discreetly conceal the encrypted data. This dual-layer approach enhances security by not only encrypting the message but also hiding its presence, making unauthorized access significantly more challenging. The user-friendly GUI enhances the overall experience by allowing users to easily generate ECC key pairs, encrypt and embed messages, and decode hidden information without requiring extensive technical knowledge. Supporting various image formats and incorporating additional features like password protection and potential future enhancements, the application is both versatile and robust. Ultimately, this project represents a significant advancement in secure message transmission, offering a practical and accessible tool for safeguarding sensitive information through a combination of advanced cryptographic and steganographic techniques. Project 11 and 12 represents a significant advancement in secure message transmission by seamlessly integrating ElGamal encryption with image-based steganography. The graphical user interface (GUI) developed with Tkinter facilitates a straightforward and intuitive approach to managing cryptographic operations, enabling users to encode and decode messages within images effortlessly. By leveraging the ElGamal algorithm's robust encryption capabilities alongside the subtlety of steganographic techniques, the application offers a comprehensive solution for confidential communication. The practical implementation of this tool demonstrates the powerful synergy between encryption and steganography, making it accessible to users without requiring deep technical expertise. With dedicated tabs for key generation, message encoding, and decoding, the application ensures that users can securely hide and retrieve information while maintaining a user-friendly experience. This project not only highlights the potential of combining these technologies but also serves as a practical example of how advanced cryptographic methods can be effectively applied in real-world scenarios.



Digital Signature Algorithm Learn By Examples With Python And Tkinter


Digital Signature Algorithm Learn By Examples With Python And Tkinter
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2024-09-17

Digital Signature Algorithm Learn By Examples With Python And Tkinter written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-17 with Computers categories.


Project 1 demonstrates generating a DSA (Digital Signature Algorithm) key pair using the cryptography library, where a 2048-bit private key is created and a corresponding public key is derived. The private key is essential for securely signing digital messages, and the public key allows others to verify these signatures. Both keys are serialized into PEM format, making them suitable for storage or transmission. The private key is serialized without encryption (though encryption is optional), while the public key is also serialized for easy sharing and use in cryptographic operations. Project 2 is a DSA (Digital Signature Algorithm) Key Generator application built with Python's tkinter for the GUI and the cryptography library for key generation. It provides an intuitive interface to generate, view, and save 2048-bit DSA key pairs, essential for secure digital signatures. The GUI features two tabs: "Generate Keys" for creating and serializing keys into PEM format, and "View Keys" for displaying them. Users can save the keys as .pem files with ease, supported by robust error handling and success notifications, making the application accessible and practical for secure communication needs. Project 3 demonstrates the process of signing and verifying a message using the Digital Signature Algorithm (DSA) in Python, while ensuring the signature is UTF-8 safe by encoding it in Base64. It begins by generating a DSA private and public key pair with a key size of 2048 bits. A message (in bytes) is then created, which is the data to be signed. The private key is used to generate a digital signature for the message using the SHA-256 hashing algorithm, ensuring the integrity and authenticity of the message. The generated signature, which is binary data, is encoded into Base64 format to make it text-safe and suitable for UTF-8 encoding. To verify the signature, the Base64-encoded signature is first decoded back into its original binary form. The public key is then used to verify the authenticity of the signature by comparing it to the message. If the verification is successful, the message "Signature is valid." is printed; otherwise, an InvalidSignature exception is raised, and the message "Signature is invalid." is displayed. This approach ensures that the digital signature can be safely transmitted or stored as text without data corruption, while still preserving its security properties. Project 4 is a Tkinter-based GUI application for Digital Signature Algorithm (DSA) operations, offering an intuitive interface for generating DSA keys, signing messages, and verifying signatures. It has two main tabs: one for generating and displaying DSA key pairs in PEM format, and another for signing and verifying messages. Users can input a message, sign it with the private key, and view the Base64-encoded signature, or verify a signature against the original message using the public key. The application handles errors gracefully, providing feedback on operations, making it a practical tool for cryptographic tasks. Project 5 and 6 provides a complete implementation for generating, signing, and verifying files using the Digital Signature Algorithm (DSA). It includes functions for creating DSA key pairs, signing file contents, and verifying signatures. The generate_and_save_keys() function generates a private and public key, serializes them to PEM format, and saves them to files. The sign_file() function uses the private key to sign the SHA-256 hash of a file's content, saving the signature in Base64 format. The verify_file_signature() function then verifies this signature using the public key, ensuring the file's authenticity and integrity. The project is designed as a user-friendly Tkinter-based GUI application, with three main functionalities: key generation, file signing, and signature verification. Users can generate DSA key pairs in the "Generate Keys" tab, sign files in the "Sign File" tab, and verify signatures in the "Verify Signature" tab. By providing an intuitive interface, this application enables users to efficiently manage cryptographic operations, ensuring data security and authenticity without needing to understand low-level cryptographic details. Project 7 and 8 focuses on creating and securing synthetic financial datasets to ensure data integrity. It combines data generation, digital signing, and signature verification to authenticate and protect financial records. The primary goals are to generate realistic financial data, secure it with digital signatures, and verify these signatures to detect tampering or corruption. The project involves generating a synthetic dataset with multiple columns such as transaction IDs, account numbers, amounts, currencies, timestamps, and transaction types. DSA keys are then generated for signing and verification, with the private key used for signing each entry in the dataset. These signatures are saved separately, allowing verification using the public key. This process ensures that any unauthorized changes to the data are detected, demonstrating a secure approach to data handling in financial applications. Project 9 and 10 combines the Digital Signature Algorithm (DSA) with Least Significant Bit (LSB) steganography to securely hide a signed message within an image. First, DSA keys are generated and used to sign a message, ensuring its authenticity and integrity. The signed message is then embedded into an image using LSB steganography, where the least significant bits of the image pixels' red channel are altered to include the binary representation of the message and its signature. To extract and verify the hidden data, the code retrieves the embedded bits from the image and reconstructs the original message. It then uses the public DSA key to verify the signature, confirming the message's authenticity. This integration of cryptographic signing with steganography provides a secure method to conceal and authenticate sensitive information within an image file. Project 11 and 12 provides a workflow for encrypting and hiding data using RSA and DSA cryptographic algorithms, along with steganography. It begins with generating RSA and DSA keys, then encrypts a message using RSA and signs it with a DSA private key, ensuring confidentiality and authenticity. The encrypted and signed data is embedded into an image using Least Significant Bit (LSB) steganography, altering the pixel values to include the hidden information. The process continues by extracting the hidden data from the image, verifying its integrity using the DSA signature, and decrypting the message with the RSA private key. This approach demonstrates a secure method of combining encryption, digital signatures, and steganography to protect and authenticate sensitive data, making it a robust solution for secure data transmission.



Ec Cryptography Tutorials Herong S Tutorial Examples


Ec Cryptography Tutorials Herong S Tutorial Examples
DOWNLOAD
Author : Herong Yang
language : en
Publisher: HerongYang.com
Release Date : 2019-04-20

Ec Cryptography Tutorials Herong S Tutorial Examples written by Herong Yang and has been published by HerongYang.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-20 with Computers categories.


This EC (Elliptic Curve) cryptography tutorial book is a collection of notes and sample codes written by the author while he was learning cryptography technologies himself. Topics include rule of chord and point addition on elliptic curves; Abelian groups with additive/multiplicative notations; EC as Abelian groups; DLP (Discrete Logarithm Problem) and trapdoor function; Galois fields or finite fields with Additive/Multiplicative Abelian Group; Prime fields, binary fields, and polynomial fields; EC fields reduced with modular arithmetic; EC subgroup and base points; EC private key and public key pairs; ECDH (Elliptic Curve Diffie-Hellman) protocol; ECDSA (Elliptic Curve Digital Signature Algorithm); ECES (Elliptic Curve Encryption Scheme) protocol; Java tool/program to generate EC keys. Updated in 2024 (Version v1.03) with minor changes. For latest updates and free sample chapters, visit https://www.herongyang.com/EC-Cryptography.



Symmetric Key Cryptography With Python And Tkinter


Symmetric Key Cryptography With Python And Tkinter
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2024-08-24

Symmetric Key Cryptography With Python And Tkinter written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-24 with Computers categories.


In the evolving landscape of data security, encryption algorithms play a crucial role in safeguarding sensitive information. This book delves into several prominent encryption algorithms, including AES, DES, 3DES, Blowfish, and CAST. Each algorithm offers unique strengths and is suitable for different use cases. Advanced Encryption Standard (AES) stands out for its robust security and efficiency, making it a preferred choice for many modern applications. Data Encryption Standard (DES), while historically significant, has largely been replaced by Triple DES (3DES), which enhances DES's security by applying it multiple times. Blowfish, a versatile and fast cipher, and CAST, known for its flexibility in key lengths, are also explored for their practical applications in various security scenarios. To provide a hands-on approach, this book includes detailed Python examples and Tkinter-based graphical user interfaces for each encryption algorithm. These practical examples illustrate how to implement these ciphers in real-world applications, from basic encryption and decryption processes to more complex use cases involving secure data handling and user interaction. Through these examples, readers will gain a comprehensive understanding of both the theoretical and practical aspects of encryption, empowering them to implement secure solutions tailored to their specific needs. In chapter two, we discussed the development of a Tkinter-based GUI application for AES encryption and decryption of synthetic data. The application consists of multiple tabs: one for displaying original data, one for showing encrypted data, another for decrypted data, and a fourth for entering and managing passwords. Key functionalities include generating a synthetic dataset with various attributes like UserID, Name, and Email, encrypting and decrypting this data using AES encryption in GCM mode, and displaying the results in a ttk.Treeview. The application also features password management, allowing users to set a password, generate an encryption key from it, and update the displays accordingly. The code includes several methods for data encryption and decryption, key derivation, and DataFrame management. The generate_data_intelligence_dataset method creates synthetic data, while encrypt_data and decrypt_data methods handle AES encryption and decryption. The update_displays method updates the DataFrame with encrypted and decrypted data and saves these to Excel files. The display_dataframe method dynamically displays DataFrames in the Tkinter GUI, with alternating row colors for better readability. This session detailed how each part of the code contributes to creating a rich and interactive application for handling encrypted data. In chapter three, we explored a detailed Tkinter application designed for managing and visualizing Bitcoin transaction data. The application generates synthetic data including wallet addresses, transaction types, dates, Bitcoin amounts, and their USD equivalents. Users enter an 8-byte DES key to encrypt Bitcoin amounts using DES encryption. The encrypted data is displayed in a tab within the Tkinter GUI, and users can view a histogram showing the distribution of Bitcoin amounts, both before and after encryption. The application leverages various Python libraries: tkinter for the GUI, pandas for data manipulation, Crypto.Cipher.DES for encryption, and matplotlib for plotting. Key functions include generating synthetic Bitcoin data, encrypting data with DES, and visualizing data distributions. The GUI is structured with tabs for entering the password, viewing original and encrypted data, and displaying distribution graphs. The session detailed how each function works, from generating Bitcoin addresses and transaction data to encrypting and decrypting data and plotting results. In chapter four, we discussed a Python code that integrates a Tkinter GUI with Triple DES (3DES) encryption and SQLite database management. The code encompasses the setup of an SQLite database, encryption and decryption of transaction data using 3DES, and functions for saving and retrieving encrypted transaction records. Key functions include generating a 3DES key, encrypting and decrypting data with appropriate padding, and handling database operations with retry logic to manage potential locking issues. We explored the database setup with table creation, and transaction management, and incorporated robust error handling to ensure reliable operation. The GUI implementation leverages Tkinter for user interaction and display, including functions to generate 3DES keys, handle encryption/decryption operations, and manage transaction records in an SQLite database. The session covered detailed explanations of how each part of the code operates, from database setup and key generation to data encryption/decryption and transaction storage. This comprehensive approach ensures secure handling of sensitive data and integrates encryption functionalities within a user-friendly interface, demonstrating practical applications of cryptographic techniques in a real-world scenario. In chapter five, we detailed a Python script using Tkinter for a secure cloud storage application leveraging Blowfish encryption. The script includes several core functionalities: user authentication, file upload and download, and cryptographic operations. Key aspects include helper functions for generating and verifying HMACs, as well as Blowfish encryption and decryption. The GUI is organized into tabs for user login/register, file upload, file download, and logs. Functions are defined to handle file selection, encryption, upload, HMAC generation, and downloading, ensuring that data integrity is maintained through HMAC verification and secure file handling. The Tkinter-based GUI is designed to provide a user-friendly interface for interacting with the secure cloud storage system. The SecureCloudStorageApp class initializes and configures the GUI with tabs for different functionalities. It manages user login, registration, file selection, and storage operations. The application supports encryption and decryption of files, storing encrypted data and HMACs, and provides feedback through a log and message boxes. This setup ensures secure data handling and user management, integrating cryptographic functions seamlessly into a functional application interface. In chapter six, we discussed and refined a Python script for managing file encryption and decryption using the CAST cipher, implemented with a Tkinter graphical user interface (GUI). The script includes functions for generating encryption keys, encrypting and decrypting files, and handling file uploads and downloads. It also features user authentication and registration mechanisms, utilizing bcrypt for password hashing and checking. The GUI allows users to perform these actions through a series of buttons and input fields, with status updates and error messages displayed in a scrollable text area. We further improved the script by adding error handling for file operations and ensuring proper file path management. Enhancements included better user feedback through message boxes for errors related to file reading, JSON decoding, and user actions. These improvements aimed to make the application more robust and user-friendly, ensuring reliable file management and secure encryption practices. The final version also addressed exceptions and edge cases to enhance the overall reliability and functionality of the Tkinter-based application.



Implementing Cryptography Using Python


Implementing Cryptography Using Python
DOWNLOAD
Author : Shannon W. Bray
language : en
Publisher: John Wiley & Sons
Release Date : 2020-08-11

Implementing Cryptography Using Python written by Shannon W. Bray and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-11 with Computers categories.


Learn to deploy proven cryptographic tools in your applications and services Cryptography is, quite simply, what makes security and privacy in the digital world possible. Tech professionals, including programmers, IT admins, and security analysts, need to understand how cryptography works to protect users, data, and assets. Implementing Cryptography Using Python will teach you the essentials, so you can apply proven cryptographic tools to secure your applications and systems. Because this book uses Python, an easily accessible language that has become one of the standards for cryptography implementation, you’ll be able to quickly learn how to secure applications and data of all kinds. In this easy-to-read guide, well-known cybersecurity expert Shannon Bray walks you through creating secure communications in public channels using public-key cryptography. You’ll also explore methods of authenticating messages to ensure that they haven’t been tampered with in transit. Finally, you’ll learn how to use digital signatures to let others verify the messages sent through your services. Learn how to implement proven cryptographic tools, using easy-to-understand examples written in Python Discover the history of cryptography and understand its critical importance in today’s digital communication systems Work through real-world examples to understand the pros and cons of various authentication methods Protect your end-users and ensure that your applications and systems are using up-to-date cryptography



Guide To Elliptic Curve Cryptography


Guide To Elliptic Curve Cryptography
DOWNLOAD
Author : Darrel Hankerson
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-06-01

Guide To Elliptic Curve Cryptography written by Darrel Hankerson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-06-01 with Computers categories.


After two decades of research and development, elliptic curve cryptography now has widespread exposure and acceptance. Industry, banking, and government standards are in place to facilitate extensive deployment of this efficient public-key mechanism. Anchored by a comprehensive treatment of the practical aspects of elliptic curve cryptography (ECC), this guide explains the basic mathematics, describes state-of-the-art implementation methods, and presents standardized protocols for public-key encryption, digital signatures, and key establishment. In addition, the book addresses some issues that arise in software and hardware implementation, as well as side-channel attacks and countermeasures. Readers receive the theoretical fundamentals as an underpinning for a wealth of practical and accessible knowledge about efficient application. Features & Benefits: * Breadth of coverage and unified, integrated approach to elliptic curve cryptosystems * Describes important industry and government protocols, such as the FIPS 186-2 standard from the U.S. National Institute for Standards and Technology * Provides full exposition on techniques for efficiently implementing finite-field and elliptic curve arithmetic * Distills complex mathematics and algorithms for easy understanding * Includes useful literature references, a list of algorithms, and appendices on sample parameters, ECC standards, and software tools This comprehensive, highly focused reference is a useful and indispensable resource for practitioners, professionals, or researchers in computer science, computer engineering, network design, and network data security.



Hands On Cryptography With Python


Hands On Cryptography With Python
DOWNLOAD
Author : Md Rasid
language : en
Publisher: Orange Education Pvt Limited
Release Date : 2025-01-15

Hands On Cryptography With Python written by Md Rasid and has been published by Orange Education Pvt Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-15 with Computers categories.


Master Cryptography with Python: From History to Real-World Implementation. Key Features● Learn by building encryption algorithms and secure systems using Python.● Master everything from basic ciphers to advanced cryptographic solutions.● Develop the ability to identify and address vulnerabilities in encryption systems. Book DescriptionCryptography is the backbone of modern digital security, and Python makes it accessible for everyone. Hands-on Cryptography with Python takes readers from foundational concepts to advanced cryptographic systems, equipping them with both theoretical understanding and practical implementation skills using Python. You’ll begin with setting up the platform and Installation and move on to understanding the basics of cryptography—exploring classic ciphers, their evolution, and their role in secure communication. Next, you’ll advance to Symmetric Key Cryptography and Asymmetric Key Cryptography, learning how to implement encryption algorithms step-by-step with Python. As you progress, you’ll dive into essential cryptographic components like Hashing and Message Integrity, enabling you to safeguard data and verify its authenticity. The book then introduces miscellaneous cryptographic schemes and highlights the principle that “Security is Only as Strong as the Weakest Link”, encouraging you to identify and address vulnerabilities. Toward the final stages, you’ll gain hands-on expertise in TLS Communication, the backbone of secure data exchange on the web. The journey culminates with an exploration of current trends in cryptography, including lightweight cryptography and post-quantum solutions, ensuring you stay ahead in this ever-evolving field. What you will learn● Understand cryptographic techniques from classical to modern approaches.● Implement symmetric and asymmetric encryption using Python.● Design secure systems using hashing and authentication protocols.● Analyze and apply cryptographic algorithms to security challenges.● Explore lightweight cryptography and post-quantum solutions.● Integrate cryptography into IoT and resource-constrained devices.Table of Contents1. Platform Setup and Installation2. Introduction to Cryptography3. Symmetric Key Cryptography4. Asymmetric Key Cryptography5. Hashing6. Message Integrity7. Miscellaneous Crypto Schemes8. Security is Only as Strong as the Weakest Link9. TLS Communication10. Latest Trends in Cryptography.